OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25928–25935

Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer

Venkatesh Mamidala, Lakshminarayana Polavarapu, Janardhan Balapanuru, Kian Ping Loh, Qing-Hua Xu, and Wei Ji  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25928-25935 (2010)
http://dx.doi.org/10.1364/OE.18.025928


View Full Text Article

Enhanced HTML    Acrobat PDF (1202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By complexion of donor and acceptor using ionic interactions, the enhanced nonlinear optical responses of donor-acceptor ionic complexes in aqueous solution were studied with 7-ns laser pulses at 532 nm. The optical limiting performance of negatively charged gold nanoparticles or graphene oxide (Acceptor) was shown to be improved significantly when they were mixed with water-soluble, positively-charged porphyrin (Donor) derivative. In contrast, no enhancement was observed when mixing with negatively-charged porphyrin. Transient absorption studies of the donor-acceptor complexes confirmed that the addition of energy transfer pathway were responsible for excited-state deactivation, which results in the observed enhancement. Fluence, angle-dependent scattering and time correlated single photon counting measurements suggested that the enhanced nonlinear scattering due to faster nonradiative decay should play a major role in the enhanced optical limiting responses.

© 2010 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 15, 2010
Revised Manuscript: November 18, 2010
Manuscript Accepted: November 18, 2010
Published: November 26, 2010

Citation
Venkatesh Mamidala, Lakshminarayana Polavarapu, Janardhan Balapanuru, Kian Ping Loh, Qing-Hua Xu, and Wei Ji, "Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer," Opt. Express 18, 25928-25935 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25928


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. W. Tutt and A. Kost, “Optical limiting performance of C-60 and C-70 solutions,” Nature 356(6366), 225–226 (1992). [CrossRef]
  2. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993). [CrossRef]
  3. J. W. Perry, K. Mansour, I. Y. S. Lee, X. L. Wu, P. V. Bedworth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273(5281), 1533–1536 (1996). [CrossRef]
  4. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73(25), 3632–3634 (1998). [CrossRef]
  5. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999). [CrossRef]
  6. N. Izard, P. Billaud, D. Riehl, and E. Anglaret, “Influence of structure on the optical limiting properties of nanotubes,” Opt. Lett. 30(12), 1509–1511 (2005). [CrossRef] [PubMed]
  7. Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103(1), 77–82 (1999). [CrossRef]
  8. C. L. Liu, X. Wang, Q. H. Gong, K. L. Tang, X. L. Jin, H. Yan, and P. Cui, “Nanosecond optical limiting property of a novel octanuclear silver cluster complex containing arylselenolate ligands,” Adv. Mater. 13(22), 1687–1690 (2001). [CrossRef]
  9. H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006). [CrossRef]
  10. Q. D. Zheng, S. K. Gupta, G. S. He, L. S. Tan, and P. A. N. Prasad, “Synthesis, Characterization, Two-Photon Absorption, and Optical Limiting Properties of Ladder-Type Oligo-p-phenylene-Cored Chromophores,” Adv. Funct. Mater. 18(18), 2770–2779 (2008). [CrossRef]
  11. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006). [CrossRef]
  12. L. Polavarapu, Q.-H. Xu, M. S. Dhoni, and W. Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Lett. 92(26), 263110 (2008). [CrossRef]
  13. G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008). [CrossRef] [PubMed]
  14. B. Dupuis, C. Michaut, I. Jouanin, J. Delaire, P. Robin, P. Feneyrou, and V. Dentan, “Photoinduced intramolecular charge-transfer systems based on porphyrin-viologen dyads for optical limiting,” Chem. Phys. Lett. 300(1-2), 169–176 (1999). [CrossRef]
  15. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992). [CrossRef] [PubMed]
  16. E. M. Mhuircheartaigh, S. Giordani, and W. J. Blau, “Linear and nonlinear optical characterization of a tetraphenylporphyrin-carbon nanotube composite system,” J. Phys. Chem. B 110(46), 23136–23141 (2006). [CrossRef] [PubMed]
  17. Z. B. Liu, J. G. Tian, Z. Guo, D. M. Ren, T. Du, J. Y. Zheng, and Y. S. Chen, “Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes,” Adv. Mater. 20(3), 511–515 (2008). [CrossRef]
  18. Z. Guo, F. Du, D. M. Ren, Y. S. Chen, J. Y. Zheng, Z. B. Liu, and J. G. Tian, “Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor-acceptor nanohybrid,” J. Mater. Chem. 16(29), 3021–3030 (2006). [CrossRef]
  19. M. P. Joshi, J. Swiatkiewicz, F. M. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett. 23(22), 1742–1744 (1998). [CrossRef]
  20. Y. F. Xu, Z. B. Liu, X. L. Zhang, Y. Wang, J. G. Tian, Y. Huang, Y. F. Ma, X. Y. Zhang, and Y. S. Chen, “A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property,” Adv. Mater. 21(12), 1275–1279 (2009). [CrossRef]
  21. C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 100(11), 6297–6301 (2003). [CrossRef] [PubMed]
  22. T. S. Balaban, A. D. Bhise, M. Fischer, M. Linke-Schaetzel, C. Roussel, and N. Vanthuyne, “Controlling chirality and optical properties of artificial antenna systems with self-assembling porphyrins,” Angew. Chem. Int. Ed. Engl. 42(19), 2140–2144 (2003). [CrossRef] [PubMed]
  23. M. S. Choi, T. Yamazaki, I. Yamazaki, and T. Aida, “Bioinspired molecular design of light-harvesting multiporphyrin arrays,” Angew. Chem. Int. Ed. Engl. 43(2), 150–158 (2004). [CrossRef]
  24. L. Polavarapu, N. Venkatram, W. Ji, and Q.-H. Xu, “Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses,” ACS Appl Mater Interfaces 1(10), 2298–2303 (2009). [CrossRef]
  25. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of solution-processed reduced graphene oxide films as transparent conductors,” ACS Nano 2(3), 463–470 (2008). [CrossRef]
  26. H. Imahori, Y. Kashiwagi, T. Hanada, Y. Endo, Y. Nishimura, I. Yamazaki, and S. Fukuzumi, “Metal and size effects on structures and photophysical properties of porphyrin-modified metal nanoclusters,” J. Mater. Chem. 13(12), 2890–2898 (2003). [CrossRef]
  27. H. Imahori, M. Arimura, T. Hanada, Y. Nishimura, I. Yamazaki, Y. Sakata, and S. Fukuzumi, “Photoactive three-dimensional monolayers: porphyrin-alkanethiolate-stabilized gold clusters,” J. Am. Chem. Soc. 123(2), 335–336 (2001). [CrossRef] [PubMed]
  28. H. Yamada, H. Imahori, Y. Nishimura, I. Yamazaki, T. K. Ahn, S. K. Kim, D. Kim, and S. Fukuzumi, “Photovoltaic properties of self-assembled monolayers of porphyrins and porphyrin-fullerene dyads on ITO and gold surfaces,” J. Am. Chem. Soc. 125(30), 9129–9139 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited