OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25936–25949

Synthesis of optical filters using microring resonators with ultra-large FSR

Salvador Vargas and Carmen Vazquez  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 25936-25949 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel synthesis method for designing flexible, tunable non-periodic filters. It is based on a building block which is presented by first time for these purposes, being the poles position tuned by means of a coupling coefficient and an amplifier gain. We present the device, the design equations and a design of a filter with flat response, 54 dB of crosstalk and less than 1.3 dB of ripple to explain and validate the method. These filters can be used as part of optical cross-connects for selecting channels avoiding very restrictive free spectral ranges. Also we check the correct operation of the device, against fabrication tolerances of coupling coefficients. Frequency dependence of the transfer function poles as a unique feature improving the crosstalk of the device spectral response is also analyzed.

© 2010 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.3990) Optical devices : Micro-optical devices
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Optical Devices

Original Manuscript: October 26, 2010
Manuscript Accepted: November 17, 2010
Published: November 26, 2010

Salvador Vargas and Carmen Vazquez, "Synthesis of optical filters using microring resonators with ultra-large FSR," Opt. Express 18, 25936-25949 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Jinguji and T. Yasui, “Synthesis of One-Input M-Output Optical FIR Lattice Circuits,” J. Lightwave Technol. 26(7), 853–866 (2008). [CrossRef]
  2. A. Melloni, “Synthesis of a parallel-coupled ring-resonator filter,” Opt. Lett. 26(12), 917–919 (2001). [CrossRef]
  3. V. Van, “Circuit-Based Method for Synthesizing Serially Coupled Microring Filters,” J. Lightwave Technol. 24(7), 2912–2919 (2006). [CrossRef]
  4. N. Ngo, “Synthesis of Tunable Optical Waveguide Filters Using Digital Signal Processing Technique,” J. Lightwave Technol. 24(9), 3520–3531 (2006). [CrossRef]
  5. C. K. Madsen, “General IIR Optical Filter Design for WDM Applications Using All-Pass Filters,” J. Lightwave Technol. 18(6), 860–868 (2000). [CrossRef]
  6. K. Jinguji, “Synthesis of Coherent Two-Port Optical Delay-Line Circuit with Ring Waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996). [CrossRef]
  7. K. Sasayama, M. Okuno, and K. Habara, “Coherent Optical Transversal Filter using silica-based single-mode waveguides,” Electron. Lett. 25(22), 1508–1509 (1989). [CrossRef]
  8. V. Van, “Dual-Mode Microring Reflection Filters,” J. Lightwave Technol. 25(10), 3142–3150 (2007). [CrossRef]
  9. S. Vargas and C. Vazquez, “Synthesis of Optical Filters Using Sagnac Interferometer in Ring Resonator,” IEEE Photon. Technol. Lett. 19(23), 1877–1879 (2007). [CrossRef]
  10. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Silicon-on-Insulator Microring Add-Drop Filters With Free Spectral Ranges Over 30 nm,” J. Lightwave Technol. 26(2), 228–236 (2008). [CrossRef]
  11. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  12. J. García, A. Martínez, and J. Martí, “Proposal of an OADM configuration with ultra-large FSR combining ring resonators and photonic bandgap structures,” Opt. Commun. 282(9), 1771–1774 (2009). [CrossRef]
  13. C. Vázquez and O. Schwelb, “Tunable, narrow-band, grating-assisted microring reflectors,” Opt. Commun. 281(19), 4910–4916 (2008). [CrossRef]
  14. D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “High Q-Channel Dropping Filters Using Ring Resonators with Integrated SOAs,” IEEE Photon. Technol. Lett. 14(10), 1442–1444 (2002). [CrossRef]
  15. J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, “An integrated optical waveguide isolator based on multimode interference by wafer direct bonding,” IEEE Trans. Magn. 41(10), 3520–3522 (2005). [CrossRef]
  16. W. Van Parys, D. Van Thourhout, R. Baets, B. Dagens, J. Decobert, O. Le Gouezigou, D. Make, and L. Lagae, “Amplifying Waveguide Optical Isolator with an Integrated electromagnet,” IEEE Photon. Technol. Lett. 19(24), 1949–1951 (2007). [CrossRef]
  17. C. Vazquez, S. Vargas, and J. M. S. Pena, “Sagnac Loop in Ring Resonators for Tunable Optical Filters,” J. Lightwave Technol. 23(8), 2555–2567 (2005). [CrossRef]
  18. H. Stoll, “Optimally Coupled, GaAs-Distributed Bragg Reflection Lasers,” IEEE Trans. Circ. Syst. 26(12), 1065–1072 (1979). [CrossRef]
  19. Q. Xu, I. Cremmos, O. Schwelb, and N. Uzunogly, Photonic Microresonator Research and Applications (Springer New York 2010), Chap. 9.
  20. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  21. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resis,” Electron. Lett. 44(2), 115–116 (2008). [CrossRef]
  22. J. Proakis, and D. Manolakis, Digital Signal Processing, (Prentice Hall 2006). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited