OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 25950–25957

Intense high-quality medical proton beams via laser fields

Benjamin J. Galow, Zoltán Harman, and Christoph H. Keitel  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 25950-25957 (2010)
http://dx.doi.org/10.1364/OE.18.025950


View Full Text Article

Enhanced HTML    Acrobat PDF (830 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simulations based on the coupled relativistic equations of motion show that protons stemming from laser-plasma processes can be efficiently post-accelerated employing single and crossed pulsed laser beams focused to spot radii on the order of the laser wavelength. We demonstrate that the crossed beams produce quasi-monoenergetic accelerated protons with kinetic energies exceeding 200 MeV, small energy spreads of about 1% and high densities as required for hadron cancer therapy. To our knowledge, this is the first scheme allowing for this important application based on an all-optical set-up.

© 2010 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics
(350.5400) Other areas of optics : Plasmas

ToC Category:
Physical Optics

History
Original Manuscript: October 26, 2010
Revised Manuscript: November 17, 2010
Manuscript Accepted: November 18, 2010
Published: November 26, 2010

Citation
Benjamin J. Galow, Zoltán Harman, and Christoph H. Keitel, "Intense high-quality medical proton beams via laser fields," Opt. Express 18, 25950-25957 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-25950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Combs, A. Nikoghosyan, O. Jäkel, C. P. Karger, T. Haberer, M. W. Münter, P. E. Huber, J. Debus, and D. Schulz-Ertner, "Carbon ion radiotherapy for pediatric patients and young adults treated for tumors of the skull base," Cancer 115, 1348-1355 (2009). [CrossRef] [PubMed]
  2. O. Jäkel, M. Krämer, C. P. Karger, and J. Debus, "Treatment planning for heavy ion radiotherapy: clinical implementation and application," Phys. Med. Biol. 46, 1101-1116 (2001). [CrossRef] [PubMed]
  3. J. A. van Kan, A. A. Bettiol, and F. Watt, "Three-dimensional nanolithography using proton beam writing," Appl. Phys. Lett. 83, 1629-1631 (2003). [CrossRef]
  4. K. W. D. Ledingham, P. McKenna, and R. P. Singhal, "Applications for nuclear phenomena generated by ultra intense lasers," Science 300, 1107-1111 (2003). [CrossRef] [PubMed]
  5. "LHC-The Large Hadron Collider," http://lhc.web.cern.ch/lhc/.
  6. "The Extreme Light Infrastructure European Project (ELI). Scientific Case," (2007). http://www. extreme-light-infrastructure.eu/pictures/ELI-scientific-case-id17.pdf.
  7. "High Power Laser Energy Research (HiPER). HiPER technical background and conceptual design report," http://www.hiperlaser.org/docs/tdr/HiPERTDR2.pdf.
  8. M. Dunne, "Laser-driven particle accelerators," Science 312, 374-376 (2006). [CrossRef] [PubMed]
  9. V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. P. D. Mangles, Z. Najmudin, M. Pittman, J.-P. Rousseau, J.-N. Scheurer, B. Walton, and A. E. Dangor, "Electron acceleration by a wake field forced by an intense ultrashort laser pulse," Science 298, 1596-1600 (2002). [CrossRef] [PubMed]
  10. H. Schwoerer, S. Pfotenhauer, O. Jäkel, K.-U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K. W. D. Ledingham, and T. Esirkepov, "Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets," Nature 439, 445-448 (2006). [CrossRef] [PubMed]
  11. J. Fuchs, P. Antici, E. d’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, and P. Audebert, "Laser-driven proton scaling laws and new paths towards energy increase," Nat. Phys. 2, 48-54 (2006). [CrossRef]
  12. L. Robson, P. T. Simpson, R. J. Clarke, K. W. D. Ledingham, F. Lindau, O. Lundh, T. McCanny, P. Mora, D. Neely, C.-G. Wahlström, M. Zepf, and P. McKenna, "Scaling of proton acceleration driven by petawatt-laserplasma interactions," Nat. Phys. 3, 58-62 (2007). [CrossRef]
  13. A. J. Mackinnon, M. Borghesi, S. Hatchett, M. H. Key, P. K. Patel, H. Campbell, A. Schiavi, R. Snavely, S. C. Wilks, and O. Willi, "Effect of plasma scale length on multi-MeV proton production by intense laser pulses," Phys. Rev. Lett. 86, 1769-1772 (2001). [CrossRef] [PubMed]
  14. J. Badziak, "Laser-driven generation of fast particles," Opto-Electron. Review 15, 1-12 (2007). [CrossRef]
  15. C. M. Haaland, "Laser electron acceleration in vacuum," Opt. Commun. 114, 280-284 (1995). [CrossRef]
  16. E. Esarey, P. Sprangle, and J. Krall, "Laser acceleration of electrons in vacuum," Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52, 5443-5453 (1995). [CrossRef]
  17. Y. I. Salamin, and C. H. Keitel, "Subcycle high electron acceleration by crossed laser beams," Appl. Phys. Lett. 77, 1082-1084 (2000). [CrossRef]
  18. Z. Major, S. Trushin, I. Ahmad, M. Siebold, C. Wandt, S. Klingebiel, T.-J. Wang, J. A. Fülöp, A. Henig, S. Kruber, R. Weingartner, A. Popp, J. Osterhoff, R. Hörlein, J. Hein, V. Pervak, A. Apolonski, F. Krausz, and S. Karsch, "Basic concepts and current status of the petawatt field synthesizer - a new approach to ultrahigh field generation," The Review of Laser Engineering 37, 431-436 (2009).
  19. S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou, and V. Yanovsky, "Generation and characterization of the highest laser intensities (1022 W/cm2)," Opt. Lett. 29, 2837-2839 (2004). [CrossRef]
  20. Y. I. Salamin, "Fields of a Gaussian beam beyond paraxial approximation," Appl. Phys. B 86, 319-326 (2007). [CrossRef]
  21. Y. I. Salamin, Z. Harman, and C. H. Keitel, "Direct high-power laser acceleration of ions for medical applications," Phys. Rev. Lett. 100, 155004 (2008). [CrossRef] [PubMed]
  22. J. X. Wang, Y. K. Ho, L. Feng, Q. Kong, P. X. Wang, Z. S. Yuan, and W. Scheid, "High-intensity laser-induced electron acceleration in vacuum," Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60, 7473-7478 (1999). [CrossRef]
  23. Z. Yan, Y. K. Ho, P. X. Wang, J. F. Hua, Z. Chen, and L. Wu, "Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration," Appl. Phys. B 81, 813-819 (2005). [CrossRef]
  24. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999), 3rd ed.
  25. X. Jaén, J. Llosa, and A. Molina, "A reduction of order two for infinite-order Lagrangians," Phys. Rev. D Part. Fields 34, 2302-2311 (1986). [CrossRef]
  26. G. V. Stupakov, and M. S. Zolotorev, "Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches," Phys. Rev. Lett. 86, 5274-5277 (2001). [CrossRef] [PubMed]
  27. H. Eickhoff, D. Böhne, T. Haberer, B. Schlitt, P. Spiller, J. Debus, and A. Dolinskii, "HIT-Heidelberg Ion beam Therapy. Scientific Case." http://www-aix.gsi.de/˜spiller/facilit_ep00.ps.
  28. "HIT-Heidelberg Ion beam Therapy. Facts in short." http://www.klinikum.uni-heidelberg.de/HIT-Facts-in-short.117995.0.html?&L=en.
  29. E. Gerstner, "Laser physics: extreme light," Nature 446, 16-18 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited