OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26052–26061

Measurement of red blood cell aggregation using X-ray phase contrast imaging

Sang Joon Lee, Hojin Ha, and Kweon-Ho Nam  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26052-26061 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1125 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When a coherent beam illuminates spatially disordered particles, speckle patterns are formed due to interference of the scattered light waves. Speckle patterns from biological tissues using synchrotron phase contrast X-ray imaging can provide functional information about micro-scale morphological structures of the tissues. In this study, we investigated the size and contrast variations of the speckles of aggregated red blood cells (RBCs) suspensions with varying the degree of RBC aggregation. Results show that the degree of RBC aggregation is a governing parameter on the change of speckle characteristics. This blood speckle analysis method can be used as a novel modality for monitoring RBC aggregation.

© 2010 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

Original Manuscript: September 13, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: November 26, 2010
Published: November 30, 2010

Sang Joon Lee, Hojin Ha, and Kweon-Ho Nam, "Measurement of red blood cell aggregation using X-ray phase contrast imaging," Opt. Express 18, 26052-26061 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Da Costa and J. Ferrari, “Anisotropic speckle patterns in the light scattered by rough cylindrical surfaces,” Appl. Opt. 36(21), 5231–5237 (1997). [CrossRef] [PubMed]
  2. P. Lehmann, “Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination,” Appl. Opt. 38(7), 1144–1152 (1999). [CrossRef]
  3. R. Berlasso, F. Perez Quintián, M. A. Rebollo, C. A. Raffo, and N. G. Gaggioli, “Study of speckle size of light scattered from cylindrical rough surfaces,” Appl. Opt. 39(31), 5811–5819 (2000). [CrossRef]
  4. Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and- concentration,” Opt. Express 13(13), 5030–5039 (2005). [CrossRef] [PubMed]
  5. Y. Piederrière, J. Cariou, Y. Guern, G. Le Brun, B. Le Jeune, J. Lotrian, J. F. Abgrall, and M. T. Blouch, “Evaluation of blood plasma coagulation dynamics by speckle analysis,” J. Biomed. Opt. 9(2), 408–412 (2004). [CrossRef] [PubMed]
  6. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lortrian, “Scattering through fluids: speckle size measurement and Monte Carlo simulations close to and into the multiple scattering,” Opt. Express 12(1), 176–188 (2004). [CrossRef] [PubMed]
  7. Y. Piederrière, J. Le Meur, J. Cariou, J. Abgrall, and M. Blouch, “Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation,” Opt. Express 12(19), 4596–4601 (2004). [CrossRef] [PubMed]
  8. M. J. Kitchen, R. A. Lewis, M. J. Morgan, M. J. Wallace, M. L. Siew, K. K. Siu, A. Habib, A. Fouras, N. Yagi, K. Uesugi, and S. B. Hooper, “Dynamic measures of regional lung air volume using phase contrast x-ray imaging,” Phys. Med. Biol. 53(21), 6065–6077 (2008). [CrossRef] [PubMed]
  9. M. J. Kitchen, D. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung tissue,” Phys. Med. Biol. 49(18), 4335–4348 (2004). [CrossRef] [PubMed]
  10. S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008). [CrossRef]
  11. S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18(3), 2368–2379 (2010). [CrossRef] [PubMed]
  12. G. B. Kim and S. J. Lee, “X-ray PIV measurements of blood flows without tracer particles,” Exp. Fluids 41(2), 195–200 (2006). [CrossRef]
  13. G. B. Kim and S. J. Lee, “Contrast enhancement of speckle patterns from blood in synchrotron X-ray imaging,” J. Biomech. 42(4), 449–454 (2009). [CrossRef] [PubMed]
  14. S. Chien, “Shear dependence of effective cell volume as a determinant of blood viscosity,” Science 168(3934), 977–979 (1970). [CrossRef] [PubMed]
  15. M. Cabel, H. J. Meiselman, A. S. Popel, and P. C. Johnson, “Contribution of red blood cell aggregation to venous vascular resistance in skeletal muscle,” Am. J. Physiol. 272(2 Pt 2), H1020–H1032 (1997). [PubMed]
  16. G. Mchedlishvili, L. Gobejishvili, and N. Beritashvili, “Effect of intensified red blood cell aggregability on arterial pressure and mesenteric microcirculation,” Microvasc. Res. 45(3), 233–242 (1993). [CrossRef] [PubMed]
  17. E. Kaliviotis and M. Yianneskis, “Fast response characteristics of red blood cell aggregation,” Biorheology 45(6), 639–649 (2008). [PubMed]
  18. J. H. Nam, Y. Yang, S. Chung, and S. Shin, “Comparison of light-transmission and -backscattering methods in the measurement of red blood cell aggregation,” J. Biomed. Opt. 15(2), 027003 (2010). [CrossRef] [PubMed]
  19. K. H. Nam, D. G. Paeng, and M. J. Choi, “Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(2), 270–279 (2009). [CrossRef] [PubMed]
  20. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8(3), 559–564 (2003). [CrossRef] [PubMed]
  21. M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci. 24(4), 639–651 (2009). [CrossRef]
  22. Z. Qin, L. G. Durand, L. Allard, and G. Cloutier, “Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power,” Ultrasound Med. Biol. 24(4), 503–511 (1998). [CrossRef] [PubMed]
  23. B. Neu and H. J. Meiselman, “Depletion-mediated red blood cell aggregation in polymer solutions,” Biophys. J. 83(5), 2482–2490 (2002). [CrossRef] [PubMed]
  24. M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, “Influence of cell-specific factors on red blood cell aggregation,” Biorheology 41(2), 91–112 (2004). [PubMed]
  25. D. Fatkin, T. Loupas, J. Low, and M. Feneley, “Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood,” Circulation 96(3), 889–896 (1997). [PubMed]
  26. H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology 46(1), 1–19 (2009). [PubMed]
  27. M. W. Westneat, J. J. Socha, and W. K. Lee, “Advances in biological structure, function, and physiology using synchrotron X-ray imaging*,” Annu. Rev. Physiol. 70(1), 119–142 (2008). [CrossRef] [PubMed]
  28. S. J. Lee and S. Kim, “Simultaneous measurement of size and velocity of microbubbles moving in an opaque tube using an X-ray particle tracking velocimetry technique,” Exp. Fluids 39(3), 492–495 (2005). [CrossRef]
  29. O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost. 29(5), 435–450 (2003). [CrossRef] [PubMed]
  30. J. J. Bishop, A. S. Popel, M. Intaglietta, and P. C. Johnson, “Rheological effects of red blood cell aggregation in the venous network: a review of recent studies,” Biorheology 38(2-3), 263–274 (2001). [PubMed]
  31. O. K. Baskurt and H. J. Meiselman, “RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease,” Microcirculation 15(7), 585–590 (2008). [CrossRef] [PubMed]
  32. C. Le Devehat, M. Vimeux, G. Bondoux, and T. Khodabandehlou, “Red blood cell aggregation in diabetes mellitus,” Int. Angiol. 9(1), 11–15 (1990). [PubMed]
  33. S. M. MacRury, S. E. Lennie, P. McColl, R. Balendra, A. C. MacCuish, and G. D. Lowe, “Increased red cell aggregation in diabetes mellitus: association with cardiovascular risk factors,” Diabet. Med. 10(1), 21–26 (1993). [CrossRef] [PubMed]
  34. E. Ernst, K. L. Resch, A. Matrai, M. Buhl, P. Schlosser, and H. F. Paulsen, “Impaired blood rheology: a risk factor after stroke?” J. Intern. Med. 229(5), 457–462 (1991). [CrossRef] [PubMed]
  35. S. Berliner, D. Zeltser, R. Rotstein, R. Fusman, and I. Shapira, “A leukocyte and erythrocyte adhesiveness/aggregation test to reveal the presence of smoldering inflammation and risk factors for atherosclerosis,” Med. Hypotheses 57(2), 207–209 (2001). [CrossRef] [PubMed]
  36. M. R. Hardeman, J. G. Dobbe, and C. Ince, “The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer,” Clin. Hemorheol. Microcirc. 25(1), 1–11 (2001).
  37. M. Donner, M. Siadat, and J. F. Stoltz, “Erythrocyte aggregation: approach by light scattering determination,” Biorheology 25(1-2), 367–375 (1988). [PubMed]
  38. H. J. Klose, E. Volger, H. Brechtelsbauer, L. Heinich, and H. Schmid-Schönbein, “Microrheology and light transmission of blood. I. The photometric effects of red cell aggregation and red cell orientation,” Pflugers Arch. 333(2), 126–139 (1972). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited