OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26062–26067

IR spectroscopy of water vapor confined in nanoporous silica aerogel

Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26062-26067 (2010)
http://dx.doi.org/10.1364/OE.18.026062


View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The absorption spectrum of the water vapor, confined in the nanoporous silica aerogel, was measured within 5000-5600 cm−1 with the IFS 125 HR Fourier spectrometer. It has been shown, that tight confinement of the molecules by the nanoporous size leads to the strong lines broadening and shift. For water vapor lines, the HWHM of confined molecules are on the average 23 times larger than those for free molecules. The shift values are in the range from −0.03 cm−1 to 0.09 cm−1. Some spectral lines have negative shift. The data on the half-widths and center shifts for some strongest H2O lines have been presented.

© 2010 OSA

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(300.3700) Spectroscopy : Linewidth
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(160.4236) Materials : Nanomaterials

ToC Category:
Spectroscopy

History
Original Manuscript: September 21, 2010
Revised Manuscript: October 17, 2010
Manuscript Accepted: November 11, 2010
Published: November 30, 2010

Citation
Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, "IR spectroscopy of water vapor confined in nanoporous silica aerogel," Opt. Express 18, 26062-26067 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26062


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Rasaiah, S. Garde, and G. Hummer, “Water in nonpolar confinement: from nanotubes to proteins and beyond,” Annu. Rev. Phys. Chem. 59(1), 713–740 (2008). [CrossRef]
  2. F.-X. Coudert, R. Vuilleumier, and A. Boutin, “Dipole moment, hydrogen bonding and IR spectrum of confined water,” ChemPhysChem 7(12), 2464–2467 (2006). [CrossRef] [PubMed]
  3. T. Inagaki, H. Yonenobu, and S. Tsuchikawa, “Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood,” Appl. Spectrosc. 62(8), 860–865 (2008). [CrossRef] [PubMed]
  4. J. Zhang and D. Grischkowsky, “Terahertz time-domain spectroscopy of submonolayer water adsorption in hydrophilic silica aerogel,” Opt. Lett. 29(9), 1031–1033 (2004). [CrossRef] [PubMed]
  5. I. D. Hartley, F. A. Kamke, and H. Peemoeller, “Cluster Theory for Water Sorption in Wood,” Wood Sci. Technol. 26(2), 83–99 (1992). [CrossRef]
  6. L. H. Little, Infrared spectra of adsorbed species (Academic Press, 1966).
  7. P. E. Wagner, R. M. Somers, and J. L. Jenkins, “Line Broadening and Relaxation of Three Microwave Transitions in Ammonia by Wall and Intermolecular Collisions,” J. Phys. B 14(24), 4763–4770 (1981). [CrossRef]
  8. S. C. M. Luijendijk, “The Effect of Wall Collisions on the Shape of Microwave Absorption Lines,” J. Phys. B 8(18), 2995–3000 (1975). [CrossRef]
  9. S. L. Coy, “Speed Dependence of Microwave Rotational Relaxation Rates,” J. Chem. Phys. 73(11), 5531–5555 (1980). [CrossRef]
  10. R. M. Somers, T. O. Poehler, and P. E. Wagner, “Microwave Time Domain Fabry-Perot Emission Spectrometer,” Rev. Sci. Instrum. 46(6), 719–725 (1975). [CrossRef]
  11. T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics,” Opt. Express 18(16), 16460–16473 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-16460 . [CrossRef] [PubMed]
  12. Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Spectroscopic Properties of Some Atmospheric Gases in Aerogel Nanopores” presented at the XVI International Symposium on High Resolution Molecular Spectroscopy HighRus-2009, Listvyanka vil., Russia, 5–10 July 2009.
  13. Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Absorbance spectrum of water vapor in aerogel nanopores” in Proceedings of XVI International Symposium on Atmospheric and Ocean Optics. Atmospheric Physics (Tomsk, Russia, 12–15 Oct. 2009), pp. 97–98.
  14. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 Molecular Spectroscopic Database,” JQSRT 110, 533–572 (2009).
  15. Yu. N. Kharzheev, “Use of Silica Aerogels in Cherenkov Counters,” Phys. Part. Nucl. 39, 107–135 (2008). [CrossRef]
  16. D. A. Bostain, J. S. Brenizer, and P. M. Norris, “Neutron Radioscopic Measurement of Water Adsorption Coefficients in Aerogels,” Res. Nondestruct. Eval. 14, 47–57 (2002).
  17. I. V. Ptashnik, K. M. Smith, and K. P. Shine, “Self-broadened Line Parameters for Water Vapour in the Spectral Region 5000–5600 cm−1,” J. Mol. Spectrosc. 232, 186–201 (2005). [CrossRef]
  18. N. N. Lavrentieva, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Measurements of N2-Broadening and –Shifting Parameters of the Water Vapor Spectral Lines in the Second Hexad Region,” JQSRT 111, 2291–2297 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited