OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26068–26076

Impact of two CO2 laser heatings for damage repairing on fused silica surface

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26068-26076 (2010)
http://dx.doi.org/10.1364/OE.18.026068


View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

CO2 laser is an interesting tool to repair defects on silica optics. We studied UV nanosecond laser-induced damage in fused silica after CO2 laser heating. The localization of damage sites and the laser damage threshold are closely related to stress area in silica induced by heating. By applying a suitable second laser heating, we managed to eliminate the debris issued from redeposited silica and to modify the stress area. As a consequence, a significant increase of laser resistance has been observed. This process offers the possibility to improve damage repairing sufficiently to extend the lifetime of the silica components.

© 2010 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(160.6030) Materials : Silica
(220.4610) Optical design and fabrication : Optical fabrication

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 20, 2010
Revised Manuscript: October 27, 2010
Manuscript Accepted: October 28, 2010
Published: November 30, 2010

Citation
P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, "Impact of two CO2 laser heatings for damage repairing on fused silica surface," Opt. Express 18, 26068-26076 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26068


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt. 21(18), 3249–3255 (1982). [CrossRef] [PubMed]
  2. J. Jiao and X. Wang, “Cutting glass substrates with dual-laser beams,” Opt. Laser Eng. , 860 (2008).
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler, S. M. Maricle, and J. E. Peterson, “CO2 laser polishing for reduction of 351 nm surface damage initiation in fused silica,” Proc. SPIE 4679, 34 (2002). [CrossRef]
  4. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt. 45(1), 162–171 (2006). [CrossRef] [PubMed]
  5. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45(21), 5358–5367 (2006). [CrossRef] [PubMed]
  6. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002). [CrossRef]
  7. M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97(11), 113519 (2005). [CrossRef]
  8. S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J.-L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255(10), 5532–5536 (2009). [CrossRef]
  9. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49(14), 2606 (2010). [CrossRef]
  10. I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 5991, 59910C (2005). [CrossRef]
  11. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009). [CrossRef]
  12. M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003). [CrossRef]
  13. M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a Process Model for CO2 Laser Mitigation of Damage Growth in Fused Silica,” Proc. SPIE 5273, 145–154 (2004). [CrossRef]
  14. L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17(26), 23488–23501 (2009). [CrossRef]
  15. I. L. Bass, V. G. Draggoo, G. M. Guss, R. P. Hackel, and M. A. Norton, “Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned CO2 Laser,” Proc. SPIE 6261, 62612A (2006). [CrossRef]
  16. L. Lamaignère, M. Balas, R. Couchinoux, T. Donval, J. C. Poncetta, S. Reyné, B. Bertussi, and H. Bercegol, “Parametric study of laser-induced surface damage density measurements: Toward reproducibility,” J. Appl. Phys. 107(2), 023105 (2010). [CrossRef]
  17. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17(14), 11469–11479 (2009). [CrossRef] [PubMed]
  18. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2007). [CrossRef]
  19. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream Intensification Effects Associated with CO2 Laser Mitigation of Fused Silica,” Proc. SPIE 6720, 67200A (2007). [CrossRef]
  20. S. Mainguy, B. Le Garrec, and M. Josse, “Downstream impact of flaws on the LIL/LMJ laser lines,” Proc. SPIE 5991, 599105 (2005). [CrossRef]
  21. H. Bercegol, P. Grua, D. Hébert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007). [CrossRef]
  22. J. Zarzyski, “Les verres et l'état vitreux,” Masson (1982).
  23. See http://hpfs@corning.com/ for #7980 product specification.
  24. L. W. Hrubesh, M. A. Norton, W. A. Molander, E. E. Donohue, S. M. Maricle, B. M. Penetrante, R. M. Brusasco, W. Grundler, J. A. Butler, J. W. Carr, R. M. Hill, L. J. Summers, M. D. Feit, A. Rubenchik, M. H. Key, P. J. Wegner, A. K. Burnham, L. A. Hackel, and M. R. Kozlowski, “Methods for mitigating surface damage growth on NIF final optics,” Proc. SPIE 4679, 23 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited