OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26113–26122

An adaptive filter for studying the life cycle of optical rogue waves

Chu Liu, Eric J. Rees, Toni Laurila, Shuisheng Jian, and Clemens F. Kaminski  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26113-26122 (2010)
http://dx.doi.org/10.1364/OE.18.026113


View Full Text Article

Enhanced HTML    Acrobat PDF (1469 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an adaptive numerical filter for analyzing fiber-length dependent properties of optical rogue waves, which are highly intense and extremely red-shifted solitons that arise during supercontinuum generation in photonic crystal fiber. We use this filter to study a data set of 1000 simulated supercontinuum pulses, produced from 5 ps pump pulses containing random noise. Optical rogue waves arise in different supercontinuum pulses at various positions along the fiber, and exhibit a lifecycle: their intensity peaks over a finite range of fiber length before declining slowly.

© 2010 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 8, 2010
Revised Manuscript: November 19, 2010
Manuscript Accepted: November 19, 2010
Published: January 30, 2010

Citation
Chu Liu, Eric J. Rees, Toni Laurila, Shuisheng Jian, and Clemens F. Kaminski, "An adaptive filter for studying the life cycle of optical rogue waves," Opt. Express 18, 26113-26122 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley, and J. R. Taylor, Supercontinuum Generation in Optical Fibers, (Cambridge University Press, Cambridge, 2010)
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef]
  4. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  5. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]
  6. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007). [CrossRef]
  7. M. Schnippering, P. R. Unwin, J. Hult, T. Laurila, C. F. Kaminski, J. M. Langridge, R. L. Jones, M. Mazurenka, and S. R. Mackenzie, “Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes,” Electrochem. Commun. 10(12), 1827–1830 (2008). [CrossRef]
  8. L. van der Sneppen, G. Hancock, C. F. Kaminski, T. Laurila, S. R. Mackenzie, S. R. T. Neil, R. Peverall, G. A. D. Ritchie, M. Schnippering, and P. R. Unwin, “Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources,” Analyst (Lond.) 135(1), 133–139 (2009). [CrossRef]
  9. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for application in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008). [CrossRef]
  10. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11385 . [CrossRef] [PubMed]
  11. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16(14), 10178–10188 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=OE-16-14-10178 . [CrossRef] [PubMed]
  12. R. S. Watt, T. K. Laurila, C. F. Kaminski, and J. F. Hult, “Cavity enhanced spectroscopy of high-temperature H(2)o in the near-infrared using a supercontinuum light source,” Appl. Spectrosc. 63(12), 1389–1395 (2009). [CrossRef] [PubMed]
  13. S. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006). [CrossRef]
  14. S. Schlachter, S. Schwedler, A. Esposito, G. S. Kaminski Schierle, G. D. Moggridge, and C. F. Kaminski, “A method to unmix multiple fluorophores in microscopy images with minimal a priori information,” Opt. Express 17(25), 22747–22760 (2009), http://www.opticsinfobase.org/VJBO/abstract.cfm?URI=oe-17-25-22747 . [CrossRef]
  15. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007). [CrossRef] [PubMed]
  16. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007). [CrossRef] [PubMed]
  17. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008). [CrossRef] [PubMed]
  18. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16(6), 3644–3651 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=OE-16-6-3644 . [CrossRef] [PubMed]
  19. G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374(7), 989–996 (2010). [CrossRef]
  20. M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34(16), 2468–2470 (2009). [CrossRef] [PubMed]
  21. A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay, and M. Taki, “Observation of extreme temporal events in CW-pumped supercontinuum,” Opt. Express 17(19), 17010–17015 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-19-17010 . [CrossRef] [PubMed]
  22. C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue wave energy statistics in supercontinuum generation,” Electron. Lett. 45(4), 217–218 (2009). [CrossRef]
  23. K. Hammani, C. Finot, J. M. Dudley, and G. Millot, “Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers,” Opt. Express 16(21), 16467–16474 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-21-16467 . [CrossRef] [PubMed]
  24. N. Akhmediev, J. Soto-Crespo, and A. Ankiewicz, “Extreme waves that appear from nowhere: On the nature of rogue waves,” Phys. Lett. A 373(25), 2137–2145 (2009). [CrossRef]
  25. A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18(2), 1234–1239 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-2-1234 . [CrossRef] [PubMed]
  26. M. Taki, A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, and M. Douay, “Third-order dispersion for generating optical rogue solitons,” Phys. Lett. 374(4), 691–695 (2010). [CrossRef]
  27. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007). [CrossRef]
  28. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17(24), 21497–21508 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-24-21497 . [CrossRef] [PubMed]
  29. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007). [CrossRef]
  30. A. V. Gorbach and D. V. Skryabin, “Theory of radiation trapping by the accelerating solitons in optical fibers,” Phys. Rev. A 76(5), 053803 (2007). [CrossRef]
  31. D. R. Solli, C. Ropers, and B. Jalali, “Rare frustration of optical supercontinuum generation,” Appl. Phys. Lett. 96(15), 151108 (2010). [CrossRef]
  32. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, San Diego, 2007).
  33. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007). [CrossRef]
  34. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27(18), 3984–3991 (2009). [CrossRef]
  35. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-18-6912 . [CrossRef] [PubMed]
  36. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31(21), 3086–3088 (2006). [CrossRef] [PubMed]
  37. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fiber,” Opt. Express 14(21), 9844–9853 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-21-9844 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (1529 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited