OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26175–26183

Influence of ocular longitudinal chromatic aberration on the selection of aspheric intraocular lenses

Xin Hong and Myoung Choi  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26175-26183 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polychromatic defocus could affect the optimal residual spherical aberration that could yield the best image quality for patients with intraocular lenses (IOLs). Modulation transfer functions (MTFs) were generated using a model that included polychromatic defocus. The maximum MTF volume occurred at + 0.05 μm of overall ocular spherical aberration. For 3 case studies, the optimal overall ocular spherical aberration was ~0.05 μm more positive with the contribution of polychromatic defocus than without it. Overall, the model indicated that image quality was usually best when IOLs allowed overall ocular spherical aberration that was slightly positive, rather than strongly positive, zero, or negative.

© 2010 OSA

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 2, 2010
Revised Manuscript: October 22, 2010
Manuscript Accepted: November 26, 2010
Published: December 1, 2010

Xin Hong and Myoung Choi, "Influence of ocular longitudinal chromatic aberration on the selection of aspheric intraocular lenses," Opt. Express 18, 26175-26183 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18(6), 683–691 (2002). [PubMed]
  2. G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31(3), 574–585 (2005). [CrossRef] [PubMed]
  3. T. Tamer, G. Ipek, Y. Yelda, and C. Izzet, “Ocular wavefront analysis and contrast sensitivity in eyes implanted with AcrySof IQ or AcrySof Natural intraocular lenses,” Acta Ophthalmol. (Copenh.) 87, 759–763 (2008).
  4. S. T. Awwad, D. Warmerdam, R. W. Bowman, S. Dwarakanathan, H. D. Cavanagh, and J. P. McCulley, “Contrast sensitivity and higher order aberrations in eyes implanted with AcrySof IQ SN60WF and AcrySof SN60AT intraocular lenses,” J. Refract. Surg. 24(6), 619–625 (2008). [PubMed]
  5. L. Cadarso, A. Iglesias, A. Ollero, B. Pita, and R. Montés-Micó, “Postoperative optical aberrations in eyes implanted with AcrySof spherical and aspheric intraocular lenses,” J. Refract. Surg. 24(8), 811–816 (2008). [PubMed]
  6. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22(5), 427–433 (2002). [CrossRef] [PubMed]
  7. X. Cheng, A. Bradley, X. Hong, and L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vis. Sci. 80(1), 43–49 (2003). [CrossRef] [PubMed]
  8. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vis. 4(4), 262–271 (2004). [CrossRef] [PubMed]
  9. Y. Levy, O. Segal, I. Avni, and D. Zadok, “Ocular higher-order aberrations in eyes with supernormal vision,” Am. J. Ophthalmol. 139(2), 225–228 (2005). [CrossRef] [PubMed]
  10. J. S. Werner, S. L. Elliott, S. S. Choi, and N. Doble, “Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation,” J. Cataract Refract. Surg. 35(7), 1229–1233 (2009). [CrossRef] [PubMed]
  11. D. D. Koch and L. Wang, “Custom optimization of intraocular lens asphericity,” Trans. Am. Ophthalmol. Soc. 105, 36–41, discussion 41–42 (2007).
  12. P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23(4), 374–384 (2007). [PubMed]
  13. G. H. H. Beiko, “Personalized correction of spherical aberration in cataract surgery,” J. Cataract Refract. Surg. 33(8), 1455–1460 (2007). [CrossRef] [PubMed]
  14. T. Ferrer-Blasco, “Effect of partial and full correction of corneal spherical aberration on visual acuity and contrast sensitivity,” J. Cataract Refract. Surg. 35(5), 949–951 (2009). [CrossRef] [PubMed]
  15. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res. 39(26), 4309–4323 (1999). [CrossRef]
  16. M. Jalie, “Form and material of ophthalmic lenses,” in Ophthalmic Lenses & Dispensing (Elsevier Health Sciences, 2003), pp. 27–38.
  17. R. J. Lee, and R. Tahran, “Vision correction for the older adult,” in Rosenbloom & Morgan's Vision and Aging, A. A. Rosenbloom and M. W. Morgan, eds. (Elsevier Health Sciences, 2006), pp. 201–214.
  18. G. M. Dai, “Optical surface optimization for the correction of presbyopia,” Appl. Opt. 45(17), 4184–4195 (2006). [CrossRef] [PubMed]
  19. L. Wang and D. D. Koch, “Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye,” Arch. Ophthalmol. 123(9), 1226–1230 (2005). [CrossRef] [PubMed]
  20. D. Atchison, and G. Smith, “Light and the eye,” in Optics of the Human Eye (Butterworth-Heinemann, 2000), pp. 99–104.
  21. Y. Le Grand, Form and Space Vision, translated by G.G. Heath and M. Millodot. (Indiana University Press, 1967).
  22. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992). [CrossRef] [PubMed]
  23. H. von Helmholtz, Helmholtz's Treatise on Physiological Optics, English translation published in 1924 from the 3rd German edition, published 1909. Translated by J. P. C. Southhall (Optical Society of America, 1924).
  24. I. Ivanoff, Les Aberrations de L'Oeil (Editions de la Revue d'Optique Theorique et Instrumentale, 1953).
  25. R. L. De Valois, and K. K. De Valois, Spatial Vision (Oxford Psychology Series, No. 14), (Oxford University Press, 1988).
  26. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002). [CrossRef]
  27. L. Thibos, N. Himebaugh, and C. Coe, “Wavefront refraction,” in Borish's Clinical Refraction, W. Benjamin, ed. (Butterworth Heinemann Elsevier, 2006), pp. 765–789.
  28. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vision Res. 46(18), 3009–3016 (2006). [CrossRef] [PubMed]
  29. R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29(8), 1487–1495 (2003). [CrossRef] [PubMed]
  30. P. R. Trueb, C. Albach, R. Montés-Micó, and T. Ferrer-Blasco, “Visual acuity and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses,” Ophthalmology 116(5), 890–895 (2009). [CrossRef] [PubMed]
  31. W. Hill, “What intraocular lens should I use in the postkeratorefractive patient?” in Curbside Consultation in Cataract Surgery, D. Chang, T. Kim, and T. Oetting, eds. (Slack, Inc., 2007), pp. 43–47.
  32. K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, “Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study,” Am. J. Ophthalmol. 142(5), 750–756 (2006). [CrossRef] [PubMed]
  33. T. Kohnen, O. K. Klaproth, and J. Bühren, “Effect of intraocular lens asphericity on quality of vision after cataract removal: an intraindividual comparison,” Ophthalmology 116(9), 1697–1706 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited