OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26184–26195

Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry

Ioachim Pupeza, Xun Gu, Ernst Fill, Tino Eidam, Jens Limpert, Andreas Tünnermann, Ferenc Krausz, and Thomas Udem  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26184-26195 (2010)
http://dx.doi.org/10.1364/OE.18.026184


View Full Text Article

Enhanced HTML    Acrobat PDF (1344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply spatially and spectrally resolved interferometry to measure the complex ratio between the field circulating inside a high-finesse femtosecond enhancement cavity and the seeding field. Our simple and highly sensitive method enables the measurement of single-round-trip group delay dispersion of a fully loaded cavity at resonance for the first time. Group delay dispersion can be determined with a reproducibility better than 1 fs2 allowing the investigation of nonlinear processes triggered by the high intracavity power. The required data acquisition time is less than 1 s.

© 2010 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.5750) Optical devices : Resonators
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 22, 2010
Revised Manuscript: September 30, 2010
Manuscript Accepted: October 16, 2010
Published: December 1, 2010

Citation
Ioachim Pupeza, Xun Gu, Ernst Fill, Tino Eidam, Jens Limpert, Andreas Tünnermann, Ferenc Krausz, and Thomas Udem, "Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry," Opt. Express 18, 26184-26195 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, "Measurement of ultralow losses in an optical interferometer," Opt. Lett. 17, 363-365 (1992). [CrossRef] [PubMed]
  2. C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, "A frequency comb in the extreme ultraviolet," Nature 436, 234-237 (2005). [CrossRef] [PubMed]
  3. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, "Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity," Phys. Rev. Lett. 94, 193201 (2005). [CrossRef] [PubMed]
  4. A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, "High Harmonic Frequency Combs for High Resolution Spectroscopy," Phys. Rev. Lett. 100, 253901 (2008). [CrossRef] [PubMed]
  5. D. C. Yost, T. R. Schibli, and J. Ye, "Efficient output coupling of intracavity high harmonic generation," Opt. Lett. 33, 1099-1101 (2008). [CrossRef] [PubMed]
  6. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, "Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×1014 W/cm2 peak intensity at 136MHz," Opt. Lett. 32, 2870-2872 (2007). [CrossRef] [PubMed]
  7. M. Hentschel, Z. Cheng, F. Krausz, and Ch. Spielmann, "Generation of 0.1-TWoptical pulses with a single-stage Ti:sapphire amplifier at a 1-kHz repetition rate," Appl. Phys. B 70, 161-164 (2000).
  8. F. X. Kaertner, W. S. Graves, D. E. Moncton, and F. O. Ilday, US Patent Application Publication US2006/0251217 A1 (2006).
  9. F. V. Hartemann, W. J. Brown, D. J. Gibson, S. G. Anderson, A. M. Tremaine, P. T. Springer, A. J. Wootton, E. P. Hartouni, and C. P. J. Barty, "High-energy scaling of Compton scattering light sources," Phys. Rev. ST Accel. Beams 8, 100702 (2005). [CrossRef]
  10. M. Theuer, D. Molter, K. Maki, C. Otani, J. A. Lhuillier, and R. Beigang, "Terahertz generation in an actively controlled femtosecond enhancement cavity," Appl. Phys. Lett. 93, 041119 (2008). [CrossRef]
  11. A. N. Luiten, and J. C. Petersen, "Ultrafast resonant polarization interferometry: Towards the first direct detection of vacuum polarization," Phys. Rev. A 70, 033801 (2004). [CrossRef]
  12. R. G. DeVoe, C. Fabre, K. Jungmann, J. Hoffnagle, and R. G. Brewer, "Precision Optical-Frequency- Difference Measurements," Phys. Rev. A 37, 1802-1805 (1988). [CrossRef] [PubMed]
  13. C. J. Hood, H. J. Kimble, and J. Ye, "Characterization of high-finesse mirrors: Loss, phase shifts, and mode structure in an optical cavity," Phys. Rev. A 64, 033804 (2001). [CrossRef]
  14. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, "Cavity-enhanced dual-comb spectroscopy," Nat. Photonics 4, 55-57 (2010). [CrossRef]
  15. M. Thorpe, R. Jones, K. Moll, J. Ye, and R. Lalezari, "Precise measurements of optical cavity dispersion and mirror coating properties via femtosecond combs," Opt. Express 13, 882-888 (2005). [CrossRef] [PubMed]
  16. A. Schliesser, C. Gohle, T. Udem, and T. W. Hänsch, "Complete characterization of a broadband high-finesse cavity using an optical frequency comb," Opt. Express 14, 5975-5983 (2006). [CrossRef] [PubMed]
  17. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, "Frequency Comb Vernier Spectroscopy for Broadband, High-Resolution, High-Sensitivity Absorption and Dispersion Spectra," Phys. Rev. Lett. 99, 263902 (2007). [CrossRef]
  18. T. J. Hammond, A. K. Mills, and D. J. Jones, "Simple method to determine dispersion of high-finesse optical cavities," Opt. Express 17, 8998-9005 (2009). [CrossRef] [PubMed]
  19. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, "Power scaling of a high repetition rate enhancement cavity," Opt. Lett. 12, 2052-2054 (2010). [CrossRef]
  20. A. P. Kovács, K. Osvay, Zs. Bor, and R. Szipöcs, "Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry," Opt. Lett. 20, 788-790 (1995). [CrossRef] [PubMed]
  21. D. Meshulach, D. Yelin, and Y. Silberberg, "Real-time spatial spectral interference measurements of ultrashort optical pulses," J. Opt. Soc. Am. B 14, 2095-2098 (1997). [CrossRef]
  22. P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, "Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution," J. Opt. Soc. Am. B 25, A81-A92 (2008). [CrossRef]
  23. A. Börzsönyi, A. P. Kovács, M. Görbe, and K. Osvay, "Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry," Opt. Commun. 281, 3051-3061 (2008). [CrossRef]
  24. D. E. Adams, T. A. Planchon, A. Hrin, J. A. Squier, and C. G. Durfee, "Characterization of coupled nonlinear spatiospectral phase following an ultrafast self-focusing interaction," Opt. Lett. 34, 1294-1296 (2009). [CrossRef] [PubMed]
  25. K. Osvay, A. Börzsönyi, A. P. Kovács, M. Görbe, G. Kurdi, and M. P. Lalashnikov, "Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure to 0.1 mbar," Appl. Phys. B 87, 457-461 (2007). [CrossRef]
  26. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, "Dispersion measurement of inert gases and gas mixtures at 800 nm," Appl. Opt. 47, 4856-4863 (2008). [CrossRef] [PubMed]
  27. K. Osvay, L. Canova, C. Durfee, A. P. Kovács, ´. A. Börzsönyi, O. Albert, and R. Lopez Martens, "Preservation of the carrier envelope phase during cross-polarized wave generation," Opt. Express 25, 22358-22365 (2009). [CrossRef]
  28. D. E. Adams, T. A. Planchon, J. A. Squier, and C. G. Durfee, "Spatiotemporal dynamics of cross-polarized wave generation," Opt. Lett. 35, 1115-1117 (2010). [CrossRef] [PubMed]
  29. K. Osvay, ´. A. Börzsönyi, Z. Heiner, A. P. Kovács, and M. P. Kalashnikov, "Measurement of Pressure Dependent Nonlinear Refractive Index of Inert Gases," CLEO 2009, paper CMU7.
  30. T. Eidam, F. Röser, O. Schmidt, J. Limpert, and A. Tünnermann, "57 W, 27 fs pulses from a fiber laser system using nonlinear compression," Appl. Phys. B 92, 9-12 (2008). [CrossRef]
  31. T. W. Hänsch, and B. Couillaud, "Laser Frequency Stabilization by Polarization Spectroscopy of a Reflecting Reference Cavity," Opt. Commun. 35, 441 (1980). [CrossRef]
  32. C. Froehly, A. Lacourt, and J. C. Vienot, "Time impulse response and time frequency response of optical pupils," Nouv. Rev. Opt. 4, 183-196 (1973). [CrossRef]
  33. L. Lepetit, G. Cheriaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 24672474 (1995). [CrossRef]
  34. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 16, 233-237 (2002). [CrossRef]
  35. E. D. Peck, and K. Reeder, "Dispersion of Air," J. Opt. Soc. Am. 62, 958-962 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited