OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26206–26213

Quantitative determination of the charge carrier concentration of ion implanted silicon by IR-near-field spectroscopy

Rainer Jacob, Stephan Winnerl, Harald Schneider, Manfred Helm, Marc Tobias Wenzel, Hans-Georg von Ribbeck, Lukas M. Eng, and Susanne C. Kehr  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26206-26213 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use a combination of a scattering-type near-field infrared microscope with a free-electron laser as an intense, tunable radiation source to spatially and spectrally resolve buried doped layers in silicon. To this end, boron implanted stripes in silicon are raster scanned at different wavelengths in the range from 10 to 14 µm. An analysis based on a simple Drude model for the dielectric function of the sample yields quantitatively correct values for the concentration of the activated carriers. In a control experiment at the fixed wavelength of 10.6 µm, interferometric near-field signals are recorded. The phase information gained in this experiment is fully consistent with the carrier concentration obtained in the spectrally resolved experiments.

© 2010 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(260.3060) Physical optics : Infrared
(300.0300) Spectroscopy : Spectroscopy
(180.4243) Microscopy : Near-field microscopy

ToC Category:

Original Manuscript: September 8, 2010
Revised Manuscript: October 20, 2010
Manuscript Accepted: October 20, 2010
Published: December 1, 2010

Rainer Jacob, Stephan Winnerl, Harald Schneider, Manfred Helm, Marc Tobias Wenzel, Hans-Georg von Ribbeck, Lukas M. Eng, and Susanne C. Kehr, "Quantitative determination of the charge carrier concentration of ion implanted silicon by IR-near-field spectroscopy," Opt. Express 18, 26206-26213 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Schroder, Semiconductor material and device characterization (John Wiley & Sons, Hoboken, 2006).
  2. P. De Wolf, R. Stephenson, T. Trenker, T. Clarysse, T. Hantschel, and W. Vandervorst, “Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy,” J. Vac. Sci. Technol. B 18(1), 361–368 (2000). [CrossRef]
  3. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, “Infrared near-field imaging of implanted semiconductors: Evidence of a pure dielectric contrast,” Appl. Phys. Lett. 71(5), 575–577 (1997). [CrossRef]
  4. A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, “Simultaneous IR Material Recognition and Conductivity Mapping by Nanoscale Near-Field Microscopy,” Adv. Mater. 19(17), 2209–2212 (2007). [CrossRef]
  5. J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006). [CrossRef] [PubMed]
  6. J. M. Stiegler, A. J. Huber, S. L. Diedenhofen, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and R. Hillenbrand, “Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy,” Nano Lett. 10(4), 1387–1392 (2010). [CrossRef] [PubMed]
  7. F. Buersgens, R. Kersting, and H.-T. Chen, “Terahertz microscopy of charge carriers in semiconductors,” Appl. Phys. Lett. 88(11), 112115 (2006). [CrossRef]
  8. H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16(5), 3430–3438 (2008). [CrossRef] [PubMed]
  9. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8(11), 3766–3770 (2008). [CrossRef] [PubMed]
  10. M. T. Wenzel, T. Härtling, P. Olk, S. C. Kehr, S. Grafström, S. Winnerl, M. Helm, and L. M. Eng, “Gold nanoparticle tips for optical field confinement in infrared scattering near-field optical microscopy,” Opt. Express 16(16), 12302–12312 (2008). [CrossRef] [PubMed]
  11. S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser,” Phys. Rev. Lett. 100(25), 256403 (2008). [CrossRef] [PubMed]
  12. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999). [CrossRef]
  13. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express 15(14), 8550–8565 (2007). [CrossRef] [PubMed]
  14. Ch. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 2005).
  15. S. Schneider, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, “Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy,” Appl. Phys. Lett. 90(14), 143101 (2007). [CrossRef]
  16. S. Solmi, F. Baruffaldi, and R. Canteri, “Diffusion of boron in silicon during post-implantation annealing,” J. Appl. Phys. 69(4), 2135–2142 (1991). [CrossRef]
  17. E. Landi, A. Armigliato, S. Solmi, R. Kögler, and E. Wieser, “Electrical Activation of Boron-Implanted Silicon During Rapid Thermal Annealing,” Appl. Phys., A Mater. Sci. Process. 47(4), 359–366 (1988). [CrossRef]
  18. M. Posselt, “Crystal-trim and its application to investigations on channeling effects during ion implantation,” Radiat. Eff. Defects Solids 130(1), 87–119 (1994). [CrossRef]
  19. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006). [CrossRef]
  20. B. Knoll and F. Keilmann, “Infrared conductivity mapping for nanoelectronics,” Appl. Phys. Lett. 77(24), 3980 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited