OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26285–26292

Model-based correction of finite aperture effect in photoacoustic tomography

Meng-Lin Li, Yi-Chieh Tseng, and Chung-Chih Cheng  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26285-26292 (2010)
http://dx.doi.org/10.1364/OE.18.026285


View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we adopt a model-based correction method to reduce the finite aperture effect in photoacoustic tomography (PAT) – the tangential resolution deteriorates as the imaging point moves away from the circular scanning center. Such degradation in resolution originates from the spatial impulse responses (SIRs) of the used finite-sized unfocused transducer. Based on a linear, discrete PAT imaging model, the proposed method employs a spatiotemporal optimal filter designed in minimum mean square error sense to compensate the SIRs associated with an unfocused transducer at every imaging point; thus retrospective restoration of the tangential resolution can be achieved. Simulation and experimental results demonstrate that this method can substantially improve the degraded tangential resolution for PAT with finite-sized unfocused transducers while retaining the radial resolution.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 20, 2010
Revised Manuscript: November 3, 2010
Manuscript Accepted: November 15, 2010
Published: December 1, 2010

Citation
Meng-Lin Li, Yi-Chieh Tseng, and Chung-Chih Cheng, "Model-based correction of finite aperture effect in photoacoustic tomography," Opt. Express 18, 26285-26292 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26285


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003). [CrossRef] [PubMed]
  2. L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quantum Electron. 14(1), 171–179 (2008). [CrossRef]
  3. M.-L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” J. Biomed. Opt. 14(1), 010507 (2009). [CrossRef] [PubMed]
  4. J. T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of melanoma skin cancer in-vivo by dual wavelength photoacoustic microscopy,” J. Biomed. Opt. 11, 034032 (2006). [CrossRef]
  5. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009). [CrossRef] [PubMed]
  6. M.-L. Li, J.-T. Oh, X. Y. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96(3), 481–489 (2008). [CrossRef]
  7. G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, “In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion,” Int. J. Oncol. 30(1), 45–54 (2007).
  8. F. Lingvall, “Time domain reconstruction methods for ultrasonic array imaging,” Ph.D. dissertation, Signals and Systems, Uppsala University, Uppsala, Sweden (2004).
  9. M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 056605 (2003). [CrossRef] [PubMed]
  10. M. Pramanik, G. Ku, and L. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14(2), 024028 (2009). [CrossRef] [PubMed]
  11. M.-L. Li and L. V. Wang, “A study of reconstruction in photoacoustic tomography with a focused transducer,” Proc. SPIE 6437, 64371E (2007). [CrossRef]
  12. P. R. Stepanishen, “Transient radiation from pistons in an infinite planar baffle,” J. Acoust. Soc. Am. 49(5B), 1629–1638 (1971). [CrossRef]
  13. B. Piwakowski and B. Delannoy, “Method for computing spatial pulse response: Time-domain approach,” J. Acoust. Soc. Am. 86(6), 2422–2432 (1989). [CrossRef]
  14. F. Lingvall, T. Olofsson, and T. Stepinski, “Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response,” J. Acoust. Soc. Am. 114(1), 225–234 (2003). [CrossRef] [PubMed]
  15. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010). [CrossRef] [PubMed]
  16. M. Roumeliotis, P. Ephrat, J. Patrick, and J. J. L. Carson, “Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system,” Opt. Express 17(17), 15228–15238 (2009). [CrossRef] [PubMed]
  17. M. Roumeliotis, R. Z. Stodilka, M. A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci, and J. J. L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition,” Opt. Express 18(11), 11406–11417 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited