OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26345–26350

Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating

Yu Zhang, Bo Lin, Swee Chuan Tjin, Han Zhang, Guanghui Wang, Ping Shum, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26345-26350 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (864 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fiber Bragg grating written in a photosensitive microfiber using KrF excimer laser via a uniform phase mask is demonstrated. We have successfully fabricated two Bragg gratings in microfibers having different diameters. In the reflection spectrum of a microfiber Bragg grating (MFBG), we observed two reflection peaks,which agrees with our numerical simulation results. Compared with the fundamental mode reflection, the higher-order reflection mode is more sensitive to the refractive index (RI) variation of the surrounding fluid due to its larger evanescent field. The measured maximum sensitivity is ~102 nm/RIU (RI unit) at an RI value of 1.378 in an MFBG with a diameter of 6 μm.

© 2010 OSA

ToC Category:

Original Manuscript: October 5, 2010
Revised Manuscript: November 4, 2010
Manuscript Accepted: November 9, 2010
Published: December 1, 2010

Yu Zhang, Bo Lin, Swee Chuan Tjin, Han Zhang, Guanghui Wang, Ping Shum, and Xinliang Zhang, "Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating," Opt. Express 18, 26345-26350 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  2. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  3. M. Sumetsky, “Optical fiber microcoil resonators,” Opt. Express 12(10), 2303–2316 (2004). [CrossRef] [PubMed]
  4. X. D. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007). [CrossRef] [PubMed]
  5. F. Xu and G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007). [CrossRef] [PubMed]
  6. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005). [CrossRef]
  7. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008). [CrossRef] [PubMed]
  8. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef] [PubMed]
  9. X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16(19), 14429–14434 (2008). [CrossRef] [PubMed]
  10. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber-optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17(20), 18142–18147 (2009). [CrossRef] [PubMed]
  11. Y. Wu, X. Zeng, Y.-J. Rao, Y. Gong, C.-L. Hou, and G.-G. Yang, “MOEMS Accelerometer Based on Microfiber Knot Resonator,” IEEE Photon. Technol. Lett. 21(20), 1547–1549 (2009). [CrossRef]
  12. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005). [CrossRef] [PubMed]
  13. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, “Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers,” Opt. Express 15(19), 11952–11958 (2007). [CrossRef] [PubMed]
  14. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006). [CrossRef]
  15. Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009). [CrossRef]
  16. Y. Zhang, E. M. Xu, D. X. Huang, and X. L. Zhang, “All-Optical Format Conversion From RZ to NRZ Utilizing Microfiber Resonator,” IEEE Photon. Technol. Lett. 21(17), 1202–1204 (2009). [CrossRef]
  17. F. Le Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A 73(1), 013819 (2006). [CrossRef]
  18. G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, “Cold-atom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions,” Phys. Rev. Lett. 99(16), 163602 (2007). [CrossRef] [PubMed]
  19. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010). [CrossRef] [PubMed]
  20. H. F. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009). [CrossRef] [PubMed]
  21. H. F. Xuan, W. Jin, and S. J. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010). [CrossRef] [PubMed]
  22. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  23. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997). [CrossRef]
  24. W. Liang, Y. Huang, Y. Xu, R. L. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005). [CrossRef]
  25. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16(4), 1149–1151 (2004). [CrossRef]
  26. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005). [CrossRef]
  27. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996). [CrossRef] [PubMed]
  28. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16(9), 1606–1612 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited