OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26351–26364

Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide

Chengliang Yang, Qiang Wu, Jingjun Xu, Keith A. Nelson, and Christopher A. Werley  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26351-26364 (2010)
http://dx.doi.org/10.1364/OE.18.026351


View Full Text Article

Enhanced HTML    Acrobat PDF (1392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond optical pulses were used to generate THz-frequency phonon polariton waves in a 50 micrometer lithium niobate slab, which acts as a subwavelength, anisotropic planar waveguide. The spatial and temporal electric field profiles of the THz waves were recorded for different propagation directions using a polarization gating imaging system, and experimental dispersion curves were determined via a two-dimensional Fourier transform. Dispersion relations for an anisotropic slab waveguide were derived via analytical analysis and found to be in excellent agreement with all observed experimental modes. From the dispersion relations, we analyze the propagation-direction-dependent behavior, effective refractive index values, and generation efficiencies for THz-frequency modes in the subwavelength, anisotropic slab waveguide.

© 2010 OSA

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(240.5420) Optics at surfaces : Polaritons
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(100.0118) Image processing : Imaging ultrafast phenomena
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 8, 2010
Revised Manuscript: November 18, 2010
Manuscript Accepted: November 19, 2010
Published: December 1, 2010

Citation
Chengliang Yang, Qiang Wu, Jingjun Xu, Keith A. Nelson, and Christopher A. Werley, "Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide," Opt. Express 18, 26351-26364 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26351


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).
  2. R. M. Koehl, S. Adachi, and K. A. Nelson, “Real-Space Polariton Wave Packet Imaging,” J. Chem. Phys. 110(3), 1317–1320 (1999). [CrossRef]
  3. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nat. Mater. 1(2), 95–98 (2002). [CrossRef]
  4. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299(5605), 374–377 (2003). [CrossRef] [PubMed]
  5. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz Polaritonics,” Annu. Rev. Mater. Res. 37(1), 317–350 (2007). [CrossRef]
  6. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive Stimulated Raman Scattering Experiments in The Polariton Regime,” J. Opt. Soc. Am. 9(12), 2179–2189 (1992). [CrossRef]
  7. Y. X. Yan, E. B. Gamble, and K. A. Nelson, “Impulsive Stimulated Scattering: General Importance in Femtosecond Laser Pulse Interactions with Matter, and Spectroscopic Applications,” J. Chem. Phys. 83(11), 5391–5399 (1985). [CrossRef]
  8. D. Auston and M. Nuss, “Electrooptic Generation and Detection of Femtosecond Electrical Transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988). [CrossRef]
  9. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76(18), 2505–2507 (2000). [CrossRef]
  10. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004). [CrossRef]
  11. K. L. Yeh, M. C. Hoffmann, J. Hebling, and A. Keith, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007). [CrossRef]
  12. K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle THz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95(10), 103304 (2009). [CrossRef]
  13. D. H. Auston, K. P. Cheung, J. A. Valdmains, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett. 53(16), 1555–1558 (1984). [CrossRef]
  14. J. K. Wahlstrand and R. Merlin, “Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,” Phys. Rev. B 68(5), 054301 (2003). [CrossRef]
  15. N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive terahertz elements,” Appl. Phys. Lett. 82(5), 674–676 (2003). [CrossRef]
  16. P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25(7), B70–B75 (2008). [CrossRef]
  17. Q. Wu, C. A. Werley, K. H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17(11), 9219–9225 (2009). [CrossRef] [PubMed]
  18. C. A. Werley, Q. Wu, K. H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, “A comparison of phase sensitive imaging techniques for studying THz waves in structured LiNbO3,” J. Opt. Soc. Am. B 27(11) 2350-2359 (2010). [CrossRef]
  19. E. A. Bahaa, B. Saleh and M. C. Teich, Fundamentals of photonics (JOHN WILEY&SONS, 1991)
  20. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge,1999).
  21. D. H. Auston and M. C. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24(2), 184–197 (1988). [CrossRef]
  22. A. S. Barker and R. Loudon, “Dielectric properties and optical phonons in LiNbO3,” Phys. Rev. 158(2), 433–445 (1967). [CrossRef]
  23. N. S. Stoyanov, T. Feurer, D. Ward, E. Statz, and K. Nelson, “Direct visualization of a polariton resonator in the THz regime,” Opt. Express 12(11), 2387–2396 (2004). [CrossRef] [PubMed]
  24. S. Wang, M. L. Shah, and J. D. Crow, “Wave propagation in thin film optical waveguides using gyrotropic and anisotropic materials as substrates,” IEEE J. Quantum Electron. 8(2), 212–216 (1972). [CrossRef]
  25. D. P. G. Russo and J. H. Harris, “Wave propagation in anisotropic thin-film optical waveguides,” J. Opt. Soc. Am. 63(2), 138–145 (1973). [CrossRef]
  26. W. K. Burns and J. Warner, “Mode dispersion in uniaxial optical waveguides,” J. Opt. Soc. Am. 64(4), 441–446 (1974). [CrossRef]
  27. V. Ramaswamy, “Propagation in asymmetrical anisotropic film waveguides,” Appl. Opt. 13(6), 1363–1371 (1974). [CrossRef] [PubMed]
  28. S. Nemoto and T. Makimoto, “Further discussion of the relationship between phase and group indices in anisotropic inhomogeneous guiding media,” J. Opt. Soc. Am. 67(9), 1281–1283 (1977). [CrossRef]
  29. D. Marcuse, “Modes of a symmetric slab optical waveguide in birefringent media-Part I: Optical axis not in plane of slab,” IEEE J. Quantum Electron. 14(10), 736–741 (1978). [CrossRef]
  30. D. Marcuse and I. P. Kaminow, “Modes of a Symmetric Slab Optical Waveguide in Birefringent Media Part II: Slab with Coplanar Optical Axis,” IEEE J. Quantum Electron. 15(2), 92–101 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited