OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26365–26372

Long-term maintenance of the carrier-envelope phase coherence of a femtosecond laser

Eok Bong Kim, Jae-hwan Lee, Won-Kyu Lee, Tran Trung Luu, and Chang Hee Nam  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26365-26372 (2010)
http://dx.doi.org/10.1364/OE.18.026365


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The long-term carrier-envelope phase (CEP) coherence of a femtosecond laser with same pulse-to-pulse CEP value, obtained using the direct locking method, is demonstrated by employing a quasi-common-path interferometer (QPI). For the evaluation of the CEP stability, the phase noise properties of a femtosecond laser with the CEP stabilized using a QPI are compared with those obtained using a Mach-Zehnder f-2f interferometer, for which the phase power spectral density and the Allan deviation were calculated from the beat signals of the interferometers. With the improved CEP stability, the long-term CEP coherent signal with an accumulated phase noise well below 1 radian can be maintained for more than 56 hours, i.e., the CEP coherence is preserved without a phase cycle slip for more than 1.6 × 1013 pulses at a repetition rate of 80 MHz. The relative stability is also estimated to be approximately 1.4 × 10−22 at a central wavelength of 790 nm.

© 2010 OSA

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology
(350.5030) Other areas of optics : Phase
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 11, 2010
Revised Manuscript: November 24, 2010
Manuscript Accepted: November 28, 2010
Published: December 1, 2010

Citation
Eok Bong Kim, Jae-hwan Lee, Won-Kyu Lee, Tran Trung Luu, and Chang Hee Nam, "Long-term maintenance of the carrier-envelope phase coherence of a femtosecond laser," Opt. Express 18, 26365-26372 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26365


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Shelton, L.-S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science 293(5533), 1286–1289 (2001). [CrossRef] [PubMed]
  2. A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421(6923), 611–615 (2003). [CrossRef] [PubMed]
  3. I. J. Sola, E. Mével, L. Elouga, E. Constant, V. Strelkov, L. Poletto, P. Villoresi, E. Benedetti, J.-P. Caumes, S. Stagira, C. Vozzi, G. Sansone, and M. Nisoli, “Controlling attosecond electron dynamics by phase-stabilized polarization gating,” Nat. Phys. 2(5), 319–322 (2006). [CrossRef]
  4. T. Remetter, P. Johnsson, J. Mauritsson, K. Varjú, Y. Ni, F. Lépine, E. Gustafsson, M. Kling, J. Khan, R. López-martens, K. J. Schafer, M. J. J. Vrakking, and A. L’huillier, “Attosecond electron wave packet interferometry,” Nat. Phys. 2(5), 323–326 (2006). [CrossRef]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000). [CrossRef] [PubMed]
  6. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69(4), 327–332 (1999). [CrossRef]
  7. M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, and T. W. Hänsch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004). [CrossRef] [PubMed]
  8. Y. S. Lee, J. H. Sung, C. H. Nam, T. J. Yu, and K.-H. Hong, “Novel method for carrier-envelope-phase stabilization of femtosecond laser pulses,” Opt. Express 13(8), 2969–2976 (2005). [CrossRef] [PubMed]
  9. T. J. Yu, K.-H. Hong, H.-G. Choi, J. H. Sung, I. W. Choi, D.-K. Ko, J. Lee, J. Kim, D. E. Kim, and C. H. Nam, “Precise and long-term stabilization of the carrier-envelope phase of femtosecond laser pulses using an enhanced direct locking technique,” Opt. Express 15(13), 8203–8211 (2007). [CrossRef] [PubMed]
  10. E. Moon, C. Li, Z. Duan, J. Tackett, K. L. Corwin, B. R. Washburn, and Z. Chang, “Reduction of fast carrier-envelope phase jitter in femtosecond laser amplifiers,” Opt. Express 14(21), 9758–9763 (2006). [CrossRef] [PubMed]
  11. V. Tsatourian, H. S. Margolis, G. Marra, D. T. Reid, and P. Gill, “Common-path self-referencing interferometer for carrier-envelope offset frequency stabilization with enhanced noise immunity,” Opt. Lett. 35(8), 1209–1211 (2010). [CrossRef] [PubMed]
  12. C. Grebing, S. Koke, B. Manschwetus, and G. Steinmeyer, “Performance comparison of interferometer topologies for carrier-envelope phase detection,” Appl. Phys. B 95(1), 81–84 (2009). [CrossRef]
  13. S. Rausch, T. Binhammer, A. Harth, E. Schulz, M. Siegel, and U. Morgner, “Few-cycle oscillator pulse train with constant carrier-envelope- phase and 65 as jitter,” Opt. Express 17(22), 20282–20290 (2009). [CrossRef] [PubMed]
  14. E. B. Kim, J. H. Lee, L. T. Trung, W.-K. Lee, D.-H. Yu, H. Y. Ryu, C. H. Nam, and C. Y. Park, “Demonstration of an optical frequency synthesizer with zero carrier-envelope-offset frequency stabilized by the direct locking method,” Opt. Express 17(23), 20920–20926 (2009). [CrossRef] [PubMed]
  15. J.-H. Lee, Y. S. Lee, J. Park, T. J. Yu, and C. H. Nam, “Long-term carrier-envelope-phase stabilization of a femtosecond laser by the direct locking method,” Opt. Express 16(17), 12624–12631 (2008). [PubMed]
  16. C. Yun, S. Chen, H. Wang, M. Chini, and Z. Chang, “Temperature feedback control for long-term carrier-envelope phase locking,” Appl. Opt. 48(27), 5127–5130 (2009). [CrossRef] [PubMed]
  17. T. M. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 ghz for optical frequency measurements and comparisons,” Opt. Lett. 31(7), 1011–1013 (2006). [CrossRef] [PubMed]
  18. T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, Th. Udem, C. Gohle, T. W. Hänsch, W. Lehnert, M. Scherer, and F. Krausz, “Monolithic carrier-envelope phase-stabilization scheme,” Opt. Lett. 30(3), 332–334 (2005). [CrossRef] [PubMed]
  19. L.-J. Chen, A. J. Benedick, J. R. Birge, M. Y. Sander, and F. X. Kärtner, “Octave-spanning, dual-output 2.166 GHz Ti:sapphire laser,” Opt. Express 16(25), 20699–20705 (2008). [CrossRef] [PubMed]
  20. D. A. Howe, D. W. Allan, and J. A. Barnes, “Properties of signal sources and measurement methods,” Proceedings of the 35th Annual Symposium on Frequency Control (1981).
  21. J. Rutman and F. L. Walls, “Characterization of frequency stability in precision frequency sources,” Proc. IEEE 79(7), 952–960 (1991). [CrossRef]
  22. S. T. Cundiff and J. Ye, “Phase stabilization of mode-locked lasers,” J. Mod. Opt. 52(2), 201–219 (2005). [CrossRef]
  23. T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, “Long-term carrier-envelope phase coherence,” Opt. Lett. 27(16), 1436–1438 (2002). [CrossRef]
  24. T. M. Fortier, J. Ye, S. T. Cundiff, and R. S. Windeler, “Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase,” Opt. Lett. 27(6), 445–447 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited