OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26388–26398

Angular and position stability of a nanorod trapped in an optical tweezers

Paul B. Bareil and Yunlong Sheng  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26388-26398 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the trap stiffness and trapping force potential for a nano-cylinder trapped in the optical tweezers against its axial and lateral shift and tilt associated to the natural Brownian motion. We explain the physical properties of the optical trapping by computing and integrating the radiation stress distribution on the nano-cylinder surfaces using the T-matrix approach. Our computation shows that the force stiffness to the lateral shift is several times higher than that to the axial shift of the nano-cylinder, and lateral torque due to the stress on the side-face is 1-2 orders of magnitude higher than that on the end-faces of a nano-cylinder with the aspect ratio of 2 – 20. The torque due to the stress on the nano-cylinder surface is 2-3 orders of magnitude higher than the spin torque. We explain why a nano-cylinder of low aspect ratio is trapped and aligned normal to the trapping beam axis.

© 2010 OSA

OCIS Codes
(000.0000) General : General
(140.7010) Lasers and laser optics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 15, 2010
Revised Manuscript: November 16, 2010
Manuscript Accepted: November 17, 2010
Published: December 1, 2010

Paul B. Bareil and Yunlong Sheng, "Angular and position stability 
of a nanorod trapped in an optical tweezers," Opt. Express 18, 26388-26398 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Dienerowitz, M. Mazilu, and G. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2(1), 021875 (2008). [CrossRef]
  2. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007). [CrossRef] [PubMed]
  3. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008). [CrossRef] [PubMed]
  4. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. Soc. Am. A 9, S196–S203 (2007).
  5. W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006). [CrossRef] [PubMed]
  6. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66(10), 4594–4602 (1989). [CrossRef]
  7. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Multipole expansion of strongly focussed laser beams,” J. Quant. Spectrosc. Radiat. Transf. 79–80, 1005–1017 (2003). [CrossRef]
  8. G. Videen, Light Scattering from a Sphere Near a Plane Interface (Springer, 2000).
  9. C. H. Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, “Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion,” J. Chem. Phys. 111(19), 8825 (1999). [CrossRef]
  10. J. H. Crichton and P. L. Marston, “The measurable distinction between the spin and orbital angular momenta of electromagnetic radiation,” Electron. J. Differ. Equations Conf. 04, 37 (2000).
  11. K. Okamoto and S. Kawata, “Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999). [CrossRef]
  12. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002), p. 307–319.
  13. A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010). [CrossRef] [PubMed]
  14. M. E. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998). [CrossRef]
  15. M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009). [CrossRef] [PubMed]
  16. F.-W. Sheu, T.-K. Lan, Y.-C. Lin, S. Chen, and C. Ay, “Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers,” Opt. Express 18(14), 14724–14729 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited