OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26399–26408

Terahertz radar cross section measurements

Krzysztof Iwaszczuk, Henning Heiselberg, and Peter Uhd Jepsen  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26399-26408 (2010)
http://dx.doi.org/10.1364/OE.18.026399


View Full Text Article

Enhanced HTML    Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

© 2010 OSA

OCIS Codes
(110.6960) Imaging systems : Tomography
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

History
Original Manuscript: October 18, 2010
Revised Manuscript: November 15, 2010
Manuscript Accepted: November 16, 2010
Published: December 1, 2010

Citation
Krzysztof Iwaszczuk, Henning Heiselberg, and Peter Uhd Jepsen, "Terahertz radar cross section measurements," Opt. Express 18, 26399-26408 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26399


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67(14), 1960 (1995). [CrossRef]
  2. R. A. Cheville, R. W. McGowan, and D. R. Grischkowsky, “Late-time target response measured with terahertz impulse ranging,” IEEE Trans. Antenn. Propag. 45(10), 1518–1524 (1997). [CrossRef]
  3. K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture terahertz impulse imaging,” Appl. Phys. Lett. 79(27), 4485 (2001). [CrossRef]
  4. T. M. Goyette, J. C. Dickinson, J. Waldman, and W. E. Nixon, “A 1.56THz compact radar range for W-band imagery of scale-model tactical targets, ” Proc. SPIE, Algorithms for Synthetic Aperture Radar Imagery VII, 4053, 615 (2000)
  5. X. J. Zhong, T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, “Terahertz-wave scattering by perfectly electrical conducting objects,” J. Electromagn. Waves Appl. 21(15), 2331–2340 (2007). [CrossRef]
  6. J. Pearce and D. M. Mittleman, “Scale model experimentation: using terahertz pulses to study light scattering,” Phys. Med. Biol. 47(21), 3823–3830 (2002). [CrossRef] [PubMed]
  7. J. Pearce and D. M. Mittleman, “Using terahertz pulses to study light scattering,” Phys. B 338(1-4), 92–96 (2003). [CrossRef]
  8. A. G. Stepanov, J. Hebling, and J. Kuhl, “Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. Lett. 83(15), 3000 (2003). [CrossRef]
  9. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593 (2004). [CrossRef]
  10. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007). [CrossRef]
  11. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847 (1984). [CrossRef]
  12. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16(8), 1204 (1999). [CrossRef]
  13. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67(24), 3523 (1995). [CrossRef]
  14. P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(4), R3052–R3054 (1996). [CrossRef] [PubMed]
  15. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924 (1996). [CrossRef]
  16. A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68(2), 150 (1996). [CrossRef]
  17. D. Turchinovich and J. I. Dijkhuis, “Performance of combined [100]–[110] ZnTe crystals in an amplified THz time-domain spectrometer,” Opt. Commun. 270(1), 96–99 (2007). [CrossRef]
  18. G. Zhao, M. Mors, T. Wenckebach, and P. C. M. Planken, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Am. B 19(6), 1476 (2002). [CrossRef]
  19. E. F. Knott, Radar cross section measurements (Van Nostrand Reinhold, New York, 1993).
  20. D. L. Mensa, High resolution radar cross-section imaging (Artech House, Boston, 1991).
  21. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25(3), 377–445 (1908). [CrossRef]
  22. M. Born, and E. Wolf, “Diffraction by a Conducting Sphere; Theory of Mie.” §13.5 in Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 7th ed. (Cambridge, England: Cambridge University Press, 1999) p. 633–644.
  23. R. Bracewell, The Hilbert Transform The Fourier Transform and its Applications, 3rd ed. (New York, McGraw-Hill, pp. 267–272, 1999).
  24. J. Pearce, H. Choi, D. M. Mittleman, J. White, and D. Zimdars, “Terahertz wide aperture reflection tomography,” Opt. Lett. 30(13), 1653–1655 (2005). [CrossRef] [PubMed]
  25. A. C. Kak, and M. Slaney, “Principles of Computerized Tomographic Imaging”, IEEE Press (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited