OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26484–26491

Distributed strain measurements using fiber Bragg gratings in small-diameter optical fiber and low-coherence reflectometry

Dragan Coric, Marco Lai, John Botsis, Aiping Luo, and Hans G. Limberger  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26484-26491 (2010)
http://dx.doi.org/10.1364/OE.18.026484


View Full Text Article

Enhanced HTML    Acrobat PDF (1011 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical low coherence reflectometry and fiber Bragg gratings written in small diameter (50 micrometer) optical fibers were used for measurements of non-homogenous internal strain fields inside an epoxy specimen with sub-grating length resolution. The results were compared with measurements using Fiber Bragg gratings in standard size (125 micrometer) single mode fibers and show that smaller fibers are less intrusive at stress heterogeneities.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 4, 2010
Revised Manuscript: November 12, 2010
Manuscript Accepted: November 16, 2010
Published: December 2, 2010

Citation
Dragan Coric, Marco Lai, John Botsis, Aiping Luo, and Hans G. Limberger, "Distributed strain measurements using fiber Bragg gratings in small-diameter optical fiber and low-coherence reflectometry," Opt. Express 18, 26484-26491 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978). [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997). [CrossRef]
  3. K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: a review,” Appl. Mech. Rev. 56(5), 493–513 (2003). [CrossRef]
  4. R. M. Measures, Structural monitoring with fiber optic technology. San Diego: Academic Press, (2001).
  5. J. L. Arce-Diego, R. López-Ruisánchez, J. M. López-Higuera, and M. A. Muriel, “Fiber Bragg grating as an optical filter tuned by a magnetic field,” Opt. Lett. 22(9), 603–605 (1997). [CrossRef] [PubMed]
  6. S. Kieckbusch, C. Knothe, and E. Brinkmeyer, “Fast and accurate characterization of fiber Bragg gratings with high spatial and spectral resolution,” in OFC 2003. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition, vol. 1. Washington DC USA: Opt. Soc. America, paper WL2 (2003).
  7. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005). [CrossRef] [PubMed]
  8. P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Bragg grating characterization by Optical Low-Coherence Reflectometry,” IEEE Photon. Technol. Lett. 5(5), 565–567 (1993). [CrossRef]
  9. P. Giaccari, H. G. Limberger, and R. P. Salathé, “Local coupling-coefficient characterization in fiber Bragg gratings,” Opt. Lett. 28(8), 598–600 (2003). [CrossRef] [PubMed]
  10. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, C. Zimmer, and H. H. Gilgen, “Direct determination of main Bragg grating parameters using OLCR and spectral measurements,” IEEE Proc. Optoelectron. 141, 141–144 (1994). [CrossRef]
  11. S. D. Dyer and K. B. Rochford, “Low-coherence interferometric measurements of fibre Bragg grating dispersion,” Electron. Lett. 35(17), 1485–1486 (1999). [CrossRef]
  12. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35(8), 1105–1115 (1999). [CrossRef]
  13. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001). [CrossRef]
  14. J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19(11), 2229–2237 (2002). [CrossRef]
  15. O. H. Waagaard, “Spatial characterization of strong fiber Bragg gratings using thermal chirp and optical-frequency-domain reflectometry,” J. Lightwave Technol. 23(2), 909–914 (2005). [CrossRef]
  16. P. Giaccari, G. R. Dunkel, L. Humbert, J. Botsis, H. G. Limberger, and R. P. Salathé, “On direct determination of non-uniform internal strain fields using fibre Bragg gratings,” Smart Mater. Struct. 14(1), 127–136 (2005). [CrossRef]
  17. P. Giaccari, “Fiber Bragg gratings characterization by Optical Low Coherence Reflectometry and sensing applications,” Swiss Federal Institute of Technology, Microengineering Department, PhD thesis No. 2726, Lausanne (2003).
  18. K. Satori, Y. Ikeda, Y. Kurosawa, A. Hongo, and N. Takeda, “Development of small-diameter optical fiber sensors for damage detection in composite laminates,” Proc. SPIE 3986, 104–111 (2000). [CrossRef]
  19. S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Comp. Part A 33(7), 971–980 (2002). [CrossRef]
  20. Y. Okabe, T. Mizutani, S. Yashiro, and N. Takeda, “Detection of microscopic damages in composite laminates with embedded small-diameter fiber Bragg grating sensors,” Compos. Sci. Technol. 62(2), 951–958 (2002). [CrossRef]
  21. Y. Okabe, S. Yashiro, R. Tsuji, T. Mizutani, and N. Takeda, “Effect of thermal residual stress on the reflection spectrum from fiber Bragg grating sensors embedded in CFRP laminates,” Comp. Part A 33(7), 991–999 (2002). [CrossRef]
  22. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991). [CrossRef]
  23. F. Colpo, L. Humbert, and J. Botsis, “Characterisation of residual stresses in a single fibre composite with FBG sensor,” Compos. Sci. Technol. 67(9), 1830–1841 (2007). [CrossRef]
  24. M. Lai, J. Botsis, D. Coric, and J. Cugnoni, “On the degree of conversion and coefficient of thermal expansion of a single fiber composite using a FBG sensor,” IVth International Conference on Times of Polymers (Top) and Composites 1042, 135–137 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited