OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26525–26534

Wide-bandwidth continuously tunable optical delay line using silicon microring resonators

Jaime Cardenas, Mark A. Foster, Nicolás Sherwood-Droz, Carl B. Poitras, Hugo L. R. Lira, Beibei Zhang, Alexander L. Gaeta, Jacob B. Khurgin, Paul Morton, and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26525-26534 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1140 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a distortion free tunable optical delay as long as 135 ps with a 10 GHz bandwidth using thermally tuned silicon microring resonators in the novel balanced configuration. The device is simple, easy to control and compact measuring only 30 µm wide by 250 µm long.

© 2010 OSA

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

Original Manuscript: October 27, 2010
Manuscript Accepted: November 19, 2010
Published: December 2, 2010

Jaime Cardenas, Mark A. Foster, Nicolás Sherwood-Droz, Carl B. Poitras, Hugo L. R. Lira, Beibei Zhang, Alexander L. Gaeta, Jacob B. Khurgin, Paul Morton, and Michal Lipson, "Wide-bandwidth continuously tunable optical delay line using silicon microring resonators," Opt. Express 18, 26525-26534 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006). [CrossRef]
  2. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “True time-delay scheme for feeding optically controlled phased-array antennas using chirped-fiber gratings,” Photon. Technol. Lett. 9(11), 1529–1531 (1997). [CrossRef]
  3. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008). [CrossRef]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  5. D. O’Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76(11), 115110 (2007). [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  7. C. Yu, T. Luo, L. Zhang, and A. E. Willner, “Data pulse distortion induced by a slow-light tunable delay line in optical fiber,” Opt. Lett. 32(1), 20–22 (2007). [CrossRef]
  8. Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79(1), 013805 (2009). [CrossRef]
  9. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005). [CrossRef] [PubMed]
  10. Y. Okawachi, M. A. Foster, J. E. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14(6), 2317–2322 (2006). [CrossRef] [PubMed]
  11. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, and S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005). [CrossRef]
  12. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” Proc. IEEE/LEOS Benelux Chapter, 2005.
  13. Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006). [CrossRef] [PubMed]
  14. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007). [CrossRef] [PubMed]
  15. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008). [CrossRef] [PubMed]
  16. J. Yang, N. K. Fontaine, Z. Pan, A. O. Karalar, S. S. Djordjevic, C. Yang, W. Chen, S. Chu, B. E. Little, and S. J. B. Yoo, “Continuously tunable, wavelength-selective buffering in optical packet switching networks,” IEEE Photon. Technol. Lett. 20(12), 1030–1032 (2008). [CrossRef]
  17. N. K. Fontaine, J. Yang, Z. Pan, S. Chu, W. Chen, B. E. Little, and S. J. Ben Yoo, “Continuously Tunable Optical Buffering at 40 Gb/s for Optical Packet Switching Networks,” J. Lightwave Technol. 26(23), 3776–3783 (2008). [CrossRef]
  18. Z. Hu, J. Sun, L. Liu, and J. Wang, “All-optical tunable delay line based on wavelength conversion in semiconductor optical amplifiers and dispersion in dispersion-compensating fiber,” Appl. Phys. B 91(3-4), 421–424 (2008). [CrossRef]
  19. Y. Okawachi, M. A. Foster, X. Chen, A. C. Turner-Foster, R. Salem, M. Lipson, C. Xu, and A. L. Gaeta, “Large tunable delays using parametric mixing and phase conjugation in Si nanowaveguides,” Opt. Express 16(14), 10349–10357 (2008). [CrossRef] [PubMed]
  20. Y. Dai, X. Chen, Y. Okawachi, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and C. Xu, “1 micros tunable delay using parametric mixing and optical phase conjugation in Si waveguides,” Opt. Express 17(9), 7004–7010 (2009). [CrossRef] [PubMed]
  21. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  22. J. B. Khurgin, “Optical buffers based on slow light in EIT media and coupled resonator structures – comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005). [CrossRef]
  23. J. B. Khurgin, “Dispersion and loss limitations on the performance of optical delay lines based on coupled resonant structures,” Opt. Lett. 32(2), 133–135 (2007). [CrossRef]
  24. C. K. Madsen, “Subband all-pass filter architectures with application to dispersion and dispersion-slope compensation and continuously variable delay lines,” J. Lightwave Technol. 21(10), 2412–2420 (2003). [CrossRef]
  25. L. Zhang, T. Luo, C. Yu, W. Zhang, and A. E. Willner, “Pattern dependence of data distortion in slow-light elements,” J. Lightwave Technol. 25(7), 1754–1760 (2007). [CrossRef]
  26. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, “Optical signal processing using tunable delay elements based on slow light,” IEEE J. Sel. Top. Quantum Electron. 14(3), 691–705 (2008). [CrossRef]
  27. J. B. Khurgin and P. A. Morton, “Tunable wideband optical delay line based on balanced coupled resonator structures,” Opt. Lett. 34(17), 2655–2657 (2009). [CrossRef] [PubMed]
  28. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  29. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited