OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26535–26549

Three-wavelength murine photoplethysmography for estimation of vascular gold nanorod concentration

Gregory J. Michalak, Jon A. Schwartz, Glenn P. Goodrich, and D. Patrick O’Neal  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26535-26549 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanoparticle-assisted photo-thermal (NAPT) ablation has become a new and attractive modality for the treatment of cancerous tumors. This therapy exploits the passive accumulation of intravenously delivered optically resonant metal nanoparticles into tumors, however, the circulating bioavailability of these particles is often unknown. We present a non-invasive optical device capable of monitoring the circulation of optically resonant gold nanorods. The device, referred to as a pulse photometer, uses the technique of multi-wavelength photoplethysmography. We simultaneously report the circulation of gold nanorods and oximetry for six hours post-injection in mice with no anesthesia and remove the probe when not collecting data. The instrument shows good agreement (R2=0.903, n=30) with ex vivo spectrophotometric analysis of blood samples. The real-time feedback provided has a strong potential for reducing variability and thus improving the efficacy of similar clinical therapies.

© 2010 OSA

OCIS Codes
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 26, 2010
Revised Manuscript: November 9, 2010
Manuscript Accepted: November 18, 2010
Published: December 3, 2010

Gregory J. Michalak, Jon A. Schwartz, Glenn P. Goodrich, and D. Patrick O’Neal, "Three-wavelength murine photoplethysmography for estimation of vascular gold nanorod concentration," Opt. Express 18, 26535-26549 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Acc. Chem. Res. 41(12), 1842–1851 (2008). [CrossRef] [PubMed]
  2. M. P. Melancon, W. Lu, Z. Yang, R. Zhang, Z. Cheng, A. M. Elliot, J. Stafford, T. Olsen, J. Z. Zhang, and C. Li, “In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photo thermal therapy,” Mol. Cancer Ther. 7(6), 1730–1739 (2008). [CrossRef] [PubMed]
  3. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5(4), 709–711 (2005). [CrossRef] [PubMed]
  4. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007). [CrossRef] [PubMed]
  5. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008). [CrossRef]
  6. H. Liu, D. Chen, F. Tang, G. Du, L. Li, X. Meng, W. Liang, Y. Zhang, X. Teng, and Y. Li, “Photo thermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres,” Nanotechnology 19(34), 1–7 (2008). [CrossRef]
  7. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). [CrossRef] [PubMed]
  8. J. H. Park, G. von Maltzahn, M. J. Xu, V. Fogal, V. R. Kotamraju, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Cooperative nanomaterial system to sensitize, target, and treat tumors,” Proc. Natl. Acad. Sci. U.S.A. 107(3), 981–986 (2010). [CrossRef] [PubMed]
  9. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005). [CrossRef] [PubMed]
  10. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006). [CrossRef] [PubMed]
  11. Y. Akiyama, T. Mori, Y. Katayama, and T. Niidome, “The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice,” J. Control. Release 139(1), 81–84 (2009). [CrossRef] [PubMed]
  12. W. D. James, L. R. Hirsch, J. L. West, P. D. O’Neal, and J. D. Payne, “Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice,” J. Radioanal. Nucl. Chem. 271(2), 455–459 (2007). [CrossRef]
  13. H. Xie, K. L. Gill-Sharp, and D. P. O’Neal, “Quantitative estimation of gold nanoshell concentrations in whole blood using dynamic light scattering,” Nanomedicine 3(1), 89–94 (2007). [CrossRef] [PubMed]
  14. R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE. J. Sel. Top. Quant. Electron. 13, 1715–1720 (2007). [CrossRef]
  15. T. Niidome, Y. Akiyama, K. Shimoda, T. Kawano, T. Mori, Y. Katayama, and Y. Niidome, “In vivo monitoring of intravenously injected gold nanorods using near-infrared light,” Small 4(7), 1001–1007 (2008). [CrossRef] [PubMed]
  16. G. J. Michalak, G. P. Goodrich, J. A. Schwartz, W. D. James, and D. P. O’Neal, “Murine photoplethysmography for in vivo estimation of vascular gold nanoshell concentration,” J. Biomed. Opt. 15(4), 047007 (2010). [CrossRef] [PubMed]
  17. G. J. Michalak, H. A. Anderson, and D. P. O’Neal, “Feasibility of using a two-wavelength photometer to estimate the concentration of circulating near-infrared extinguishing nanoparticles,” J Biomed. Nanotechnol. 6(1), 73–81 (2010). [CrossRef] [PubMed]
  18. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4(9), 1689–1692 (2004). [CrossRef]
  19. J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987). [CrossRef] [PubMed]
  20. J. G. Webster, Design of Pulse Oximeters, Chapter 4, pp. 40–55, New York, NY, Taylor and Francis Group, 1997.
  21. K. Yamakoshi and Y. Yamakoshi, “Pulse glucosimetry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11(5), 1–9 (2006). [CrossRef]
  22. T. Iijima, T. Aoyagi, Y. Iwao, J. Masuda, M. Fuse, N. Kobayashi, and H. Sankawa, “Cardiac output and circulating blood volume analysis by pulse dye-densitometry,” J. Clin. Monit. 13(2), 81–89 (1997). [CrossRef] [PubMed]
  23. T. Imai, C. Mitaka, T. Nosaka, A. Koike, S. Ohki, Y. Isa, and F. Kunimoto, “Accuracy and repeatability of blood volume measurement by pulse dye densitometry compared to the conventional method using 51Cr-labeled red blood cells,” Intensive Care Med. 26(9), 1343–1349 (2000). [CrossRef] [PubMed]
  24. N. Taguchi, S. Nakagawa, K. Miyasaka, M. Fuse, and T. Aoyagi, “Cardiac output measurement by pulse dye densitometry using three wavelengths,” Pediatr. Crit. Care Med. 5(4), 343–350 (2004). [CrossRef] [PubMed]
  25. Y. Mendelson, R. M. Lewinsky, and Y. Wasserman, “Multi-wavelength reflectance pulse oximetry,” Anesth. Analg. 94(1Suppl), S26–S30 (2002). [PubMed]
  26. T. Aoyagi, M. Fuse, N. Kobayashi, K. Machida, and K. Miyasaka, “Multiwavelength pulse oximetry: theory for the future,” Anesth. Analg. 105(6Suppl), S53–S58 (2007). [CrossRef] [PubMed]
  27. J. Kraitl, H. Ewald, and H. Gehring, “An optical device to measure blood components by a photoplethysmographic method,” J. Opt. A, Pure Appl. Opt. 7(6), S318–S324 (2005). [CrossRef]
  28. S. J. Barker, J. Curry, D. Redford, and S. Morgan, “Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study,” Anesthesiology 105(5), 892–897 (2006). [CrossRef] [PubMed]
  29. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991). [PubMed]
  30. D. K. Sardar and L. B. Levy, “Optical properties of whole blood,” Lasers Med. Sci. 13(2), 106–111 (1998). [CrossRef]
  31. W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990). [CrossRef]
  32. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen saturation-dependant absorption and scattering of blood,” Phys. Rev. Lett. 93(2), 1–4 (2004). [CrossRef]
  33. A. C. Guyton, and J. E. Hall, Textbook of Medical Physiology, Chapters 39–40, pp. 491–513, (Philadelphia, PA, Elsevier Saunders, 2006).
  34. S. A. Prahl, “Tabulated Molar Extinction Coefficients of Reduced and Oxygenated Hemoglobin,” http://omlc.ogi.edu/spectra/hemoglobin/summary.html (1998)
  35. A. J. Welch, and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, New York, NY, Plenum Press, 1995.
  36. G. J. Michalak, “In vivo non-invasive monitoring of optically resonant metal nanoparticles using multi-wavelength photoplethysmography,” Dissertation published August 2010.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited