OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26550–26568

Bayesian filtering of human brain hemodynamic activity elicited by visual short-term maintenance recorded through functional near-infrared spectroscopy (fNIRS)

F. Scarpa, S. Cutini, P. Scatturin, R. Dell’Acqua, and G. Sparacino  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26550-26568 (2010)
http://dx.doi.org/10.1364/OE.18.026550


View Full Text Article

Enhanced HTML    Acrobat PDF (1560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that measures changes in oxy-hemoglobin (ΔHbO) and deoxy-hemoglobin (ΔHbR) concentration associated with brain activity. The signal acquired with fNIRS is naturally affected by disturbances engendering from ongoing physiological activity (e.g., cardiac, respiratory, Mayer wave) and random measurement noise. Despite its several drawbacks, the so-called conventional averaging (CA) is still widely used to estimate the hemodynamic response function (HRF) from noisy signal. One such drawback is related to the number of trials necessary to derive stable HRF functions adopting the CA approach, which must be substantial (N >> 50). In this work, a pre-processing procedure to remove artifacts followed by the application of a non-parametric Bayesian approach is proposed that capitalizes on a priori available knowledge about HRF and noise. Results with the proposed Bayesian approach were compared with CA and with a straightforward band-pass filtering approach. On simulated data, a five times lower estimation error on HRF was obtained with respect to that obtained by CA, and 2.5 times lower than that obtained by band pass filtering. On real data, the improvement achieved by the present method was attested by an increase in the contrast to noise ratio (CNR) and by a reduced variability in single trial estimation. An application of the present Bayesian approach is illustrated that was optimized to monitor changes in hemodynamic activity reflecting variations in visual short-term memory load in humans, which are notoriously hard to detect using functional magnetic resonance imaging (fMRI). In particular, statistical analyses of HRFs recorded during a memory task established with high reliability the crucial role of the intraparietal sulcus and the intra-occipital sulcus in posterior areas of the human brain in visual short-term memory maintenance.

© 2010 OSA

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(200.4560) Optics in computing : Optical data processing
(300.6340) Spectroscopy : Spectroscopy, infrared
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 24, 2010
Revised Manuscript: November 12, 2010
Manuscript Accepted: November 14, 2010
Published: December 3, 2010

Citation
F. Scarpa, S. Cutini, P. Scatturin, R. Dell’Acqua, and G. Sparacino, "Bayesian filtering of human brain hemodynamic activity elicited by visual short-term maintenance recorded through functional near-infrared spectroscopy (fNIRS)," Opt. Express 18, 26550-26568 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Boas, M. A. Franceschini, A. K. Dunn, and G. Strangman, “Noninvasive Imaging of Cerebral Activation with Diffuse Optical Tomography,”in Vivo Optical Imaging of Brain Function. E. D. (CRC Press), Chap 8, pp. 193–221, (2002)
  2. S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional Near-Infrared Spectroscopy,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006). [CrossRef] [PubMed]
  3. H. Obrig and A. Villringer, “Beyond the visible--imaging the human brain with light,” J. Cereb. Blood Flow Metab. 23(1), 1–18 (2003). [CrossRef]
  4. S. P. Koch, S. Koendgen, R. Bourayou, J. Steinbrink, and H. Obrig, “Individual alpha-frequency correlates with amplitude of visual evoked potential and hemodynamic response,” Neuroimage 41(2), 233–242 (2008). [CrossRef] [PubMed]
  5. R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54(7), 2093–2102 (2009). [CrossRef] [PubMed]
  6. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009). [CrossRef] [PubMed]
  7. G. Jasdzewski, G. Strangman, J. Wagner, K. K. Kwong, R. A. Poldrack, and D. A. Boas, “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy,” Neuroimage 20(1), 479–488 (2003). [CrossRef] [PubMed]
  8. S. G. Diamond, T. J. Huppert, V. Kolehmainen, M. A. Franceschini, J. P. Kaipio, S. R. Arridge, and D. A. Boas, “Dynamic physiological modeling for functional diffuse optical tomography,” Neuroimage 30(1), 88–101 (2006). [CrossRef]
  9. V. Kolehmainen, S. Prince, S. R. Arridge, and J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20(5), 876–889 (2003). [CrossRef]
  10. S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. A. Boas, and S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48(11), 1491–1504 (2003). [CrossRef] [PubMed]
  11. A. F. Abdelnour and T. J. Huppert, “Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model,” Neuroimage 46(1), 133–143 (2009). [CrossRef] [PubMed]
  12. Y. H. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005). [CrossRef]
  13. M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M. Tittgemeyer, A. Villringer, and D. Y. von Cramon, “Towards a standard analysis for functional near-infrared imaging,” Neuroimage 21(1), 283–290 (2004). [CrossRef] [PubMed]
  14. S. Tak, K. E. Jang, J. W. Jung, J. Jang, and J. C. Ye, “General Linear Model and Inference for Near Infrared Spectroscopy using Global Confidence Region Analysis,” in Proceedings of IEEE Conference on International Symposium on Biomedical Imaging (ISBI), pp. 476–479 (2008).
  15. J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009). [CrossRef]
  16. K. E. Jang, S. Tak, J. Jung, J. Jang, Y. Jeong, and J. C. Ye, “Wavelet minimum description length detrending for near-infrared spectroscopy,” J. Biomedical Opt . 14, 034004-(1–13) (2009).
  17. G. Morren, U. Wolf, P. Lemmerling, M. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput. 42(1), 92–99 (2004). [CrossRef] [PubMed]
  18. C. B. Akgül, A. Akin, and B. Sankur, “Extraction of cognitive activity-related waveforms from functional near-infrared spectroscopy signals,” Med. Biol. Eng. Comput. 44(11), 945–958 (2006). [CrossRef] [PubMed]
  19. A. V. Medvedev, J. Kainerstorfer, S. V. Borisov, R. L. Barbour, and J. VanMeter, “Event-related fast optical signal in a rapid object recognition task: improving detection by the independent component analysis,” Brain Res. 1236, 145–158 (2008). [CrossRef] [PubMed]
  20. G. Taga, K. Asakawa, A. Maki, Y. Konishi, and H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. U.S.A. 100(19), 10722–10727 (2003). [CrossRef] [PubMed]
  21. R. Sitaram, H. Zhang, C. Guan, M. Thulasidas, Y. Hoshi, A. Ishikawa, K. Shimizu, and N. Birbaumer, “Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface,” Neuroimage 34(4), 1416–1427 (2007). [CrossRef] [PubMed]
  22. S. Cutini, P. Scatturin, E. Menon, P. S. Bisiacchi, L. Gamberini, M. Zorzi, and R. Dell’Acqua, “Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study,” Neuroimage 42(2), 945–955 (2008). [CrossRef] [PubMed]
  23. H. Kojima and T. Suzuki, “Hemodynamic change in occipital lobe during visual search: visual attention allocation measured with NIRS,” Neuropsychologia 48(1), 349–352 (2010). [CrossRef]
  24. G. Sparacino, S. Milani, E. Arslan, and C. Cobelli, “A Bayesian approach to estimate evoked potentials,” Comput. Methods Programs Biomed. 68(3), 233–248 (2002). [CrossRef] [PubMed]
  25. R. Luria, P. Sessa, A. Gotler, P. Jolicoeur, and R. Dell’Acqua, “Visual short-term memory capacity for simple and complex objects,” J. Cogn. Neurosci. 22(3), 496–512 (2010). [CrossRef]
  26. J. J. Todd and R. Marois, “Capacity limit of visual short-term memory in human posterior parietal cortex,” Nature 428(6984), 751–754 (2004). [CrossRef] [PubMed]
  27. Y. Xu and M. M. Chun, “Dissociable neural mechanisms supporting visual short-term memory for objects,” Nature 440(7080), 91–95 (2006). [CrossRef]
  28. M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988). [CrossRef] [PubMed]
  29. M. L. Schroeter, S. Zysset, F. Kruggel, and D. Y. von Cramon, “Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy,” Neuroimage 19(3), 555–564 (2003). [CrossRef] [PubMed]
  30. M. L. Schroeter, S. Cutini, M. M. Wahl, R. Scheid, and D. Yves von Cramon, “Neurovascular coupling is impaired in cerebral microangiopathy--An event-related Stroop study,” Neuroimage 34(1), 26–34 (2007). [CrossRef]
  31. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, “Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy,” Pediatr. Res. 39(5), 889–894 (1996). [CrossRef] [PubMed]
  32. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6(3), 49–57 (2000). [CrossRef] [PubMed]
  33. M. Okamoto, H. Dan, K. Sakamoto, K. Takeo, K. Shimizu, S. Kohno, I. Oda, S. Isobe, T. Suzuki, K. Kohyama, and I. Dan, “Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping,” Neuroimage 21(1), 99–111 (2004). [CrossRef] [PubMed]
  34. S. Cutini, P. Scatturin, and M. Zorzi, “A new method based on ICBM152 head surface for probe placement in multichannel fNIRS,” Neuroimage (to be published). [PubMed]
  35. M. R. Nuwer, G. Comi, R. Emerson, A. Fuglsang-Frederiksen, J. M. Guérit, H. Hinrichs, A. Ikeda, F. J. Luccas, and P. Rappelsburger, The International Federation of Clinical Neurophysiology, “IFCN standards for digital recording of clinical EEG,” Electroencephalogr. Clin. Neurophysiol. 106(3), 259–261 (1998). [CrossRef] [PubMed]
  36. A. K. Singh, M. Okamoto, H. Dan, V. Jurcak, and I. Dan, “Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI,” Neuroimage 27(4), 842–851 (2005). [CrossRef] [PubMed]
  37. F. E. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics 11(1), 1–21 (1969). [CrossRef]
  38. A. Devaraj, “Signal Processing for functional near-infrared neuroimaging,” Unpublished M. S. Thesis, Drexel University, (2005).
  39. M. A. Lindquist and T. D. Wager, “Validity and power in hemodynamic response modeling: a comparison study and a new approach,” Hum. Brain Mapp. 28(8), 764–784 (2007). [CrossRef]
  40. Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage 45(3), 788–794 (2009). [CrossRef] [PubMed]
  41. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study,” J. Biomed. Opt. 12(6), 064009 (2007). [CrossRef]
  42. S. M. Zeki, A vision of the brain, (Blackwell Scientific Publications, Oxford, UK, 1993).
  43. R. Dell’Acqua, P. Sessa, P. Toffanin, R. Luria, and P. Jolicoeur, “Orienting attention to objects in visual short-term memory,” Neuropsychologia 48(2), 419–428 (2010). [CrossRef]
  44. P. Jolicoeur, P. Sessa, R. Dell’Acqua, and N. Robitaille, “On the control of visual spatial attention: evidence from human electrophysiology,” Psychol. Res. 70(6), 414–424 (2006). [CrossRef]
  45. N. Robitaille, R. Marois, J. J. Todd, S. Grimault, D. Cheyne, and P. Jolicoeur, “Distinguishing between lateralized and nonlateralized brain activity associated with visual short-term memory: fMRI, MEG, and EEG evidence from the same observers,” Neuroimage 53(4), 1334–1345 (2010). [CrossRef] [PubMed]
  46. J. P. Culver, A. M. Siegel, M. A. Franceschini, J. B. Mandeville, and D. A. Boas, “Evidence that cerebral blood volume can provide brain activation maps with better spatial resolution than deoxygenated hemoglobin,” Neuroimage 27(4), 947–959 (2005). [CrossRef] [PubMed]
  47. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc., B 57, 289–300 (1995).
  48. G. K. Aguirre, E. Zarahn, and M. D’esposito, “The variability of human, BOLD hemodynamic responses,” Neuroimage 8(4), 360–369 (1998). [CrossRef] [PubMed]
  49. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt. 11(5), 054007 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited