OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26569–26582

Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs

Lj. Babić and M. J. A. de Dood  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26569-26582 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonant coupling of light to leaky modes of a photonic crystal slab leads to asymmetric Fano lineshapes in the reflectivity spectra. The generally accepted picture, for a lossless system, is that the sign of the real-valued parameter q controls the asymmetry of a Fano resonance. For the reflectivity of a symmetric slab this situation occurs if the amplitude reflection coefficient of the slab goes through zero. In this article, we show that it is also possible to change the asymmetry of a resonance by angle tuning without reaching a condition of zero amplitude. Moreover, we show that the picture of a real-valued parameter q that controls the asymmetry is incomplete.

© 2010 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(260.5740) Physical optics : Resonance
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 1, 2010
Revised Manuscript: November 12, 2010
Manuscript Accepted: November 22, 2010
Published: December 3, 2010

Lj. Babić and M. J. A. de Dood, "Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs," Opt. Express 18, 26569-26582 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Fano, "Effects of configuration interaction on intensities and phase shifts," Phys. Rev. 124, 1866 (1961).
  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys. 82, 2257 (2010). [CrossRef]
  3. R. K. Adair, C. K. Bockelman, and R. E. Peterson, "Experimental corroboration of the theory of neutron resonance scattering," Phys. Rev. 76, 308 (1949). [CrossRef]
  4. K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, "Tuning of the fano effect through a quantum dot in an aharonov-bohm interferometer," Phys. Rev. Lett. 88, 256806 (2002). [CrossRef] [PubMed]
  5. M. Mendoza, P. A. Schulz, R. O. Vallejos, and C. H. Lewenkopf, "Fano resonances in the conductance of quantum dots with mixed dynamics," Phys. Rev. B 77, 155307 (2008). [CrossRef]
  6. C. Genet, M. P. van Exter, and J. P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun. 225, 331 (2003). [CrossRef]
  7. M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, "Observation of coupling between surface plasmons in index-matched hole arrays," Phys. Rev. B 77, 115437 (2008). [CrossRef]
  8. A. Bärnthaler, S. Rotter, F. Libisch, J. Burgdörfer, S. Gehler, U. Kuhl, and H.-J. Stöckmann, "Probing decoherence through fano resonances," Phys. Rev. Lett. 105, 056801 (2010). [CrossRef] [PubMed]
  9. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438 (1997). [CrossRef]
  10. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De la Rue, "Photonic band-structure effects in the reflectivity of periodically patterned waveguides," Phys. Rev. B 60, R16255 (1999). [CrossRef]
  11. M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, "Spectroscopy of photonic bands in macroporous silicon photonic crystals," Phys. Rev. B 65, 113111 (2002). [CrossRef]
  12. A. A. Clerk, X. Waintal, and P. W. Brouwer, "Fano resonances as a probe of phase coherence in quantum dots," Phys. Rev. Lett. 86, 4636 (2001). [CrossRef] [PubMed]
  13. S. Klaiman, N. Moiseyev, and H. R. Sadeghpour, "Interpretation of the fano lineshape reversal in quantum waveguides," Phys. Rev. B 75, 113305 (2007). [CrossRef]
  14. S. Fan, and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002). [CrossRef]
  15. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, "Light scattering and fano resonances in high-q photonic crystal nanocavities," Appl. Phys. Lett. 94, 071101 (2009). [CrossRef]
  16. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908 (2002). [CrossRef]
  17. E. Flück, "Local interaction of light with periodic photonic structures," Ph.D. thesis, University of Twente (2003).
  18. E. F. C. Driessen, D. Stolwijk, and M. J. A. de Dood, "Asymmetry reversal in the reflection from a two-dimensional photonic crystal," Opt. Lett. 32, 3137 (2007). [CrossRef] [PubMed]
  19. Philips MiPlaza - Cedova, http://www.cedova.com.
  20. Z EON corporation, http://www.zeon.co.jp.
  21. Gel-Pak, http://www.gelpak.com.
  22. Lj. Babić, R. Leijssen, E. Driessen and M. J. A. de Dood, in preparation.
  23. S. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the fano resonance in optical resonators," J. Opt. Soc. Am. A 20, 569 (2003). [CrossRef]
  24. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).
  25. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999). [CrossRef]
  26. M. Born, and E. Wolf, Principles of Optics (Pergamon Press, 1980), 6th ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited