OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26583–26599

Modeling mode characteristics of transverse anisotropic waveguides using a vector pseudospectral approach

Chia-Chien Huang  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26583-26599 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1616 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



I extend the full vector pseudospectral-based eigenvalue scheme, based on the transverse magnetic field components, to analyze the mode behaviors of dielectric optical waveguides with transverse, nondiagonal anisotropy. One of the principal axes of the anisotropic materials is thus constrained to point in the longitudinal direction of the waveguide. I expand the guided mode fields in the interior subdomains with finite extent by using Chebyshev polynomials and those in the exterior subdomains with semi-infinite extent by using Laguerre–Gaussian functions with an accurately determined scaling factor. This study analyzes two examples: (1) the circularly-polarized modes of a magneto-optical raised strip waveguide and (2) the guided mode patterns of a nematic liquid-crystal channel waveguide under different orientations of the liquid-crystal molecule. The comparison of the numerical results with those from the vector finite difference approach demonstrates that my numerical approach has a higher computational efficiency and requires less computer memory.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: September 7, 2010
Revised Manuscript: November 16, 2010
Manuscript Accepted: December 1, 2010
Published: December 3, 2010

Chia-Chien Huang, "Modeling mode characteristics of transverse anisotropic waveguides using a vector pseudospectral approach," Opt. Express 18, 26583-26599 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, “A full-vectorial beam propagation method for anisotropic waveguides,” J. Lightwave Technol. 12(11), 1926–1931 (1994). [CrossRef]
  2. P. Lüsse, K. Ramm, and H. G. Unger, “Vectorial eigenmode calculation for anisotropic planar optical waveguides,” Electron. Lett. 32(1), 38–39 (1996). [CrossRef]
  3. Q. Wang, G. Farrell, and Y. Semenova, “Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method,” J. Opt. Soc. Am. A 23(8), 2014–2019 (2006). [CrossRef]
  4. Y. Tsuji, M. Koshiba, and N. Takimoto, “Finite element beam propagation method for anisotropic optical waveguides,” J. Lightwave Technol. 17(4), 723–728 (1999). [CrossRef]
  5. S. Selleri, L. Vincetti, and M. Zoboli, “Full-vector finite-element beam propagation method for anisotropic optical device analysis,” IEEE J. Quantum Electron. 36(12), 1392–1401 (2000). [CrossRef]
  6. K. Saitoh and M. Koshiba, “Approximate scalar finite element beam-propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(5), 786–792 (2001). [CrossRef]
  7. J. P. da Silva, H. E. Hernandez-Figueroa, and A. M. F. Frasson, “Improved vectorial finite-element BPM analysis for transverse anisotropic media,” J. Lightwave Technol. 21(2), 567–576 (2003). [CrossRef]
  8. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008). [CrossRef]
  9. M. F. O. Hameed, S. S. A. Obayya, K. Al-Begain, M. I. Abo el Maaty, and A. M. Nasr, “Modal properties of an index guiding nematic liquid crystal based photonic crystal fiber,” J. Lightwave Technol. 27(21), 4754–4762 (2009). [CrossRef]
  10. M. Y. Chen, S. M. Hsu, and H. C. Chang, “A finite-difference frequency-domain method for full-vectorial mode solutions of anisotropic optical waveguides with arbitrary permittivity tensor,” Opt. Express 17(8), 5965–5979 (2009). [CrossRef] [PubMed]
  11. V. Schulz, “Adjoint high-order vectorial finite elements for nonsymmetric transversally anisotropic waveguides,” IEEE Trans. Microw. Theory Tech. 51(4), 1086–1095 (2003). [CrossRef]
  12. B. G. Ward, “Finite element analysis of photonic crystal rods with inhomogeneous anisotropic refractive index tensor,” IEEE J. Quantum Electron. 44(2), 150–156 (2008). [CrossRef]
  13. R. Pashaie, “Fourier decomposition analysis of anisotropic inhomogeneous dielectric waveguide structures,” IEEE Trans. Microw. Theory Tech. 55(8), 1689–1696 (2007). [CrossRef]
  14. J. C. Chen and S. Jüngling, “Computation of high-order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26(3), S199–S205 (1994). [CrossRef]
  15. T. Ando, H. Nakayama, S. Numata, J. Yamauchi, and H. Nakano, “Eigenmode analysis of optical waveguides by a Yee-mesh-based imaginary-distance propagation method for an arbitrary dielectric interface,” J. Lightwave Technol. 20(8), 1627–1634 (2002). [CrossRef]
  16. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer-Verlag, New York, 1988).
  17. Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antennas Wirel. Propag. Lett. 1(6), 131–134 (2002). [CrossRef]
  18. C. C. Huang and C. C. Huang, “An efficient and accurate semivectorial spectral collocation method for analyzing polarized modes of rib waveguides,” J. Lightwave Technol. 23(7), 2309–2317 (2005). [CrossRef]
  19. C. C. Huang, C. C. Huang, and J. Y. Yang, “A full-vectorial pseudospectral modal analysis of dielectric optical waveguides with stepped refractive index profiles,” IEEE J. Sel. Top. Quantum Electron. 11(2), 457–465 (2005). [CrossRef]
  20. P.-J. Chiang, C.-L. Wu, C.-H. Teng, C.-S. Yang, and H. C. Chang, “Full-vectorial optical waveguide mode solvers using multidomain pseudospectral frequency-domain (PSFD) formulations,” IEEE J. Quantum Electron. 44(1), 56–66 (2008). [CrossRef]
  21. C. C. Huang, “Numerical calculations of ARROW structures by pseudospectral approach with Mur’s absorbing boundary conditions,” Opt. Express 14(24), 11631–11652 (2006). [CrossRef] [PubMed]
  22. P. J. Chiang and Y. C. Chiang, “Pseudospectral frequency-domain formulae based on modified perfectly matched layers for calculating both guided and leaky modes,” IEEE Photon. Technol. Lett. 22(12), 908–910 (2010). [CrossRef]
  23. J. B. Xiao and X. H. Sun, “Full-vectorial mode solver for anisotropic optical waveguides using multidomain spectral collocation method,” Opt. Commun. 283(14), 2835–2840 (2010). [CrossRef]
  24. J. P. Boyd, Chebyshev and Fourier Spectral Methods (Springer-Verlag, 2nd edition, 2001).
  25. R. B. Lehoucq and D. C. Sorensen, “Deflation techniques for an implicitly re-started Arnoldi iteration,” SIAM J. Matrix Anal. Appl. 17(4), 789–821 (1996). [CrossRef]
  26. T. Tang, “The Hermite spectral method for Gauss-type functions,” SIAM J. Sci. Comput. 14(3), 594–605 (1993). [CrossRef]
  27. T. Tamir, Guides-Wave Optoelectronics (Springer-Verlag, 1988).
  28. M. Loymeyer, N. Bahlmann, O. Zhuromskyy, H. Dotsch, and P. Hertel, “Phase-matched rectangular magnetooptic waveguides for applications in integrated optics isolators: numerical assessment,” Opt. Commun. 158(1-6), 189–200 (1998). [CrossRef]
  29. B. Bellini and R. Beccherelli, “Modeling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D Appl. Phys. 42(4), 045111 (2009). [CrossRef]
  30. A. D’Álessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006). [CrossRef]
  31. J. Beeckman, R. James, F. A. Í. Fernandez, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” J. Lightwave Technol. 27(17), 3812–3819 (2009). [CrossRef]
  32. P. J. Vanbrabant, J. Beeckman, K. Neyts, R. James, and F. A. Fernandez, “A finite element beam propagation method for simulation of liquid crystal devices,” Opt. Express 17(13), 10895–10909 (2009). [CrossRef] [PubMed]
  33. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons. Inc., New York, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited