OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26600–26612

Production of degenerate polarization entangled photon pairs in the telecom-band from a pump enhanced parametric downconversion process

P. J. Thomas, C. J. Chunnilall, D. J. M. Stothard, D. A. Walsh, and M. H. Dunn  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26600-26612 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design and implementation of a novel source of degenerate polarization entangled photon pairs in the telecom band, based on a cavity enhanced parametric downconversion process, is presented. Two of the four maximally entangled Bell states are produced; the remaining two are obtainable by the addition of a half wave plate into the setup. The coincident photon detection rate in the A/D basis between two detectors at the output of the device revealed the production of highly entangled states, resulting in quantum interference visibilities of 0.971 ± 0.041 (ϕ = 0 state) and 0.932 ± 0.036 (ϕ = π state) respectively. The entangled states were found to break the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality by around 6 standard deviations. From the measured coincidence counting rates and the optical system losses, an entangled photon pair production rate of 8.9 × 104 s−1 mW−1 pump was estimated.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics

ToC Category:
Quantum Optics

Original Manuscript: September 24, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: November 16, 2010
Published: December 3, 2010

P. J. Thomas, C. J. Chunnilall, D. J. M. Stothard, D. A. Walsh, and M. H. Dunn, "Production of degenerate polarization entangled photon pairs in the telecom-band from a pump enhanced parametric downconversion process," Opt. Express 18, 26600-26612 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gottesman and I. L. Chuang, “Demonstrating the viabilty of universal quantum computation using teleportation and single-qubit operations,” Nature 402(6760), 390–393 (1999). [CrossRef]
  2. A. K. Ekert, “Quantum cryptography and Bell's theorem.” in Quantum Measurements in Optics: Proceedings of a NATO Advanced Research Workshop on Quantum Measurements in Optics, P. Tombesi and D.F. Walls, Eds. (Plenum Press, New York, 1992), pp. 413–418.
  3. T. C. Ralph, A. G. White, W. J. Munro, and G. J. Milburn, “Simple scheme for efficient linear optics quantum gates,” Phys. Rev. A 65(1), 012314 (2001). [CrossRef]
  4. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64(6), 062311 (2001). [CrossRef]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  6. C. E. Kuklewicz, M. Fiorentino, G. Messin, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004). [CrossRef]
  7. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69(4), 041801 (2004). [CrossRef]
  8. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73(1), 012316 (2006). [CrossRef]
  9. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008). [CrossRef]
  10. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007). [CrossRef] [PubMed]
  11. M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarisation-entangled photon pairs,” Opt. Commun. 183(1-4), 133–137 (2000). [CrossRef]
  12. J. Volz, C. Kurtsiefer, and H. Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79(6), 869–871 (2001). [CrossRef]
  13. M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102(6), 063603 (2009). [CrossRef] [PubMed]
  14. R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, “Ultraviolet enhancment cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments,” Nat. Photonics 4(3), 170–173 (2010). [CrossRef]
  15. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007). [CrossRef]
  16. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007). [CrossRef] [PubMed]
  17. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003). [CrossRef]
  18. S. Odate, A. Yoshizawa, and H. Tsuchida, “Polarisation-entangled photon-pair source at 1550 nm using 1 mm-long PPLN waveguide in fibre-loop configuration,” Electron. Lett. 43(24), 1376–1377 (2007). [CrossRef]
  19. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express 16(17), 12460–12468 (2008). [CrossRef] [PubMed]
  20. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009). [CrossRef] [PubMed]
  21. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair souce based on a type-II PPLN waveguide emitting at a telecom wavelength,” N. J. Phys. 12(10), 103005 (2010). [CrossRef]
  22. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005). [CrossRef] [PubMed]
  23. C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14(15), 6936–6941 (2006). [CrossRef] [PubMed]
  24. J. Chen, K. F. Lee, C. Liang, and P. Kumar, “Fiber-based telecom-band degenerate-frequency source of entangled photon pairs,” Opt. Lett. 31(18), 2798–2800 (2006). [CrossRef] [PubMed]
  25. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommuncation-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010). [CrossRef] [PubMed]
  26. P.J. Thomas, M.H. Dunn, D.J.M. Stothard, D.A. Walsh, and C.J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” submitted to J. Mod. Opt. (2010). [PubMed]
  27. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test Local Hidden-Variable Theories,” Phys. Rev. Lett. 23(15), 880–884 (1969). [CrossRef]
  28. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser Phase and Frequency Stabilization Using an Optical Resonator,” Appl. Phys. B 31(2), 97–105 (1983). [CrossRef]
  29. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987). [CrossRef] [PubMed]
  30. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Extended phase-matching conditions for improved entanglement generation,” Phys. Rev. A 66(4), 043813 (2002). [CrossRef]
  31. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601-1-4 (2005).
  32. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Erratum: Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching [Phys. Rev. Lett. 94, 083601 (2005)],” Phys. Rev. Lett. 94(16), 169903–1 (2005). [CrossRef]
  33. W. J. Alford and A. V. Smith, “Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling,” J. Opt. Soc. Am. B 18(4), 524–533 (2001). [CrossRef]
  34. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, (Addison-Wesley. 1970), Vol 3.
  35. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited