OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26613–26624

Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities

Matteo Galli, Dario Gerace, Karl Welna, Thomas F. Krauss, Liam O’Faolain, Giorgio Guizzetti, and Lucio Claudio Andreani  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26613-26624 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1347 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the first demonstration of frequency conversion by simultaneous second- and third-harmonic generation in a silicon photonic crystal nanocavity using continuous-wave optical excitation. We observe a bright dual wavelength emission in the blue/green (450–525 nm) and red (675–790 nm) visible windows with pump powers as low as few microwatts in the telecom bands, with conversion efficiencies of ∼ 10−5/W and ∼ 10/W2 for the second- and third-harmonic, respectively. Scaling behaviors as a function of pump power and cavity quality-factor are demonstrated for both second- and third order processes. Successful comparison of measured and calculated emission patterns indicates that third-harmonic is a bulk effect while second-harmonic is a surface-related effect at the sidewall holes boundaries. Our results are promising for obtaining practical low-power, continuous-wave and widely tunable multiple harmonic generation on a silicon chip.

© 2010 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: October 12, 2010
Revised Manuscript: November 19, 2010
Manuscript Accepted: November 21, 2010
Published: December 3, 2010

Virtual Issues
December 3, 2010 Spotlight on Optics

Matteo Galli, Dario Gerace, Karl Welna, Thomas F. Krauss, Liam O'Faolain, Giorgio Guizzetti, and Lucio Claudio Andreani, "Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities," Opt. Express 18, 26613-26624 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  2. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on a silicon chip,” Nat. Photonics 2, 35–38 (2007). [CrossRef]
  3. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881–4887 (2008). [CrossRef] [PubMed]
  4. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1, 232–237 (2007). [CrossRef]
  5. T. Carmon, and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3, 430–435 (2007). [CrossRef]
  6. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  7. R. Boyd, Nonlinear Optics (Academic Press, California, 1992).
  8. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef] [PubMed]
  9. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  10. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004). [CrossRef] [PubMed]
  11. A. R. Cowan, G. W. Rieger, and J. F. Young, “Nonlinear transmission of 1.5 μm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12, 1611–1621 (2004). [CrossRef] [PubMed]
  12. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, Jr., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14, 5524–5534 (2006). [CrossRef] [PubMed]
  13. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultra-low threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002). [CrossRef] [PubMed]
  14. A. Liu, H. Rong, O. Cohen, M. Paniccia, and D. Hak, “Net optical gain in low-loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 112, 4261–4267 (2004). [CrossRef]
  15. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005). [CrossRef] [PubMed]
  16. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–209 (2009). [CrossRef]
  17. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in silicon photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  18. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2006). [CrossRef]
  19. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42, 1454–1455 (2006). [CrossRef]
  20. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef] [PubMed]
  21. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005). [CrossRef]
  22. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  23. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  24. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007). [CrossRef] [PubMed]
  25. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frederick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007). [CrossRef]
  26. D. Coquillat, G. Vecchi, C. Comaschi, A. M. Malvezzi, J. Torres, and M. Le Vassor d’Yerville, “Enhanced second- and third-harmonic generation and induced photoluminescence in a two-dimensional GaN photonic crystal,” Appl. Phys. Lett. 87, 101106 (2005). [CrossRef]
  27. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, “GaAs photonic crystal cavity with ultra-high Q: microwatt nonlinearity at 1.55 μm,” Opt. Lett. 33, 1908–1910 (2008). [CrossRef] [PubMed]
  28. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second-harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009). [CrossRef]
  29. M. Falasconi, L. C. Andreani, A. M. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001). [CrossRef]
  30. T. V. Dolgova, A. I. Maidykovski, M. G. Martemyanov, A. A. Fedyanin, O. A. Aktsipetrov, G. Marowsky, V. A. Yakovlev, and G. Mattei, “Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals,” Appl. Phys. Lett. 81, 2725 (2002). [CrossRef]
  31. P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R. W. Boyd, “Dramatic enhancement of third-harmonic generation in three dimensional photonic crystals,” Phys. Rev. Lett. 92, 083903 (2004). [CrossRef] [PubMed]
  32. M. G. Martemyanov, E. M. Kim, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, “Third-harmonic generation in silicon photonic crystals and microcavities,” Phys. Rev. B 70, 073311 (2004). [CrossRef]
  33. C. Comaschi, G. Vecchi, A. M. Malvezzi, M. Patrini, G. Guizzetti, M. Liscidini, L. C. Andreani, D. Peyrade, and Y. Chen, “Enhanced third-harmonic reflection and diffraction in silicon-on-insulator photonic waveguides,” Appl. Phys. B 81, 305–311 (2005). [CrossRef]
  34. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813 (1968). [CrossRef]
  35. J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543 (1985). [CrossRef]
  36. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254 (1986). [CrossRef]
  37. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129 (1987). [CrossRef]
  38. R. Jones, H. Rong, A. Liu, A. W. Fang, and M. J. Paniccia, “Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,” Opt. Express 13, 519–525 (2005). [CrossRef] [PubMed]
  39. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  40. A. Witvrouwa, B. Du Bois, P. De Moor, A. Verbist, C. Van Hoof, H. Bender, and K. Baert, “A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal,” Proc. SPIE 4174, 130–141 (2000). [CrossRef]
  41. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009). [CrossRef]
  42. M. Toishi, D. Englund, A. Faraon, and J. Vuckovic, “High-brightness single photon source from a quantum dot in a directional emission nanocavity,” Opt. Express 17, 14618–14626 (2009). [CrossRef] [PubMed]
  43. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010). [CrossRef] [PubMed]
  44. The 3D FDTD simulations shown in this work have been performed with commercial software from Lumerical Solutions Inc.
  45. L. C. Andreani, D. Gerace, and M. Agio, “Gap maps, diffraction losses, and exciton-polaritons in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 2, 103–110 (2004). [CrossRef]
  46. D. Gerace, and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. Fundam. Appl. 3, 120–128 (2005). [CrossRef]
  47. M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederic, P. J. Poole, G. C. Aers, and R. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities,” Appl. Phys. Lett. 87, 221110 (2009). [CrossRef]
  48. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009). [CrossRef]
  49. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005). [CrossRef] [PubMed]
  50. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377–386 (2006). [CrossRef] [PubMed]
  51. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  52. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 5
Fig. 3 Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited