OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26635–26646

Progress in optical waveguides fabricated from chalcogenide glasses

Xin Gai, Ting Han, Amrita Prasad, Steve Madden, Duk-Yong Choi, Rongping Wang, Douglas Bulla, and Barry Luther-Davies  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26635-26646 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review the fabrication processes and properties of waveguides that have been made from chalcogenide glasses including highly nonlinear waveguides developed for all-optical processing.

© 2010 OSA

OCIS Codes
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Chalcogenide Glass

Original Manuscript: August 30, 2010
Revised Manuscript: October 31, 2010
Manuscript Accepted: November 2, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

Xin Gai, Ting Han, Amrita Prasad, Steve Madden, Duk-Yong Choi, Rongping Wang, Douglas Bulla, and Barry Luther-Davies, "Progress in optical waveguides fabricated from chalcogenide glasses," Opt. Express 18, 26635-26646 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009). [CrossRef]
  2. M. D. Pelusi, V. G. Ta'eed, L. B. Fu, E. Magi, M. R. E. Lamont, S. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008). [CrossRef]
  3. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010). [CrossRef] [PubMed]
  4. A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified Preparation Procedure for Laboratory Melting of Multicomponent Chalcogenide Glasses,” J. Non-Cryst. Solids 139(2), 121–128 (1992). [CrossRef]
  5. V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, and V. G. Plotnichenko, “Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass,” Inorg. Mater. 41(3), 308–314 (2005). [CrossRef]
  6. K. Shimakawa, A. Kolobov, and S. R. Elliott, “Photoinduced effects and metastability in amorphous semiconductors and insulators,” Adv. Phys. 44(6), 475–588 (1995). [CrossRef]
  7. K. Tanaka, “Photoinduced structural changes in amorphous semiconductors,” Semiconductors 32(8), 861–866 (1998). [CrossRef]
  8. M. Vlcek and H. Jain, “Nanostructuring of chalcogenide glasses using electron beam lithography,” J, Optoelectron. Adv. Materials 8(6), 2108–2111 (2006).
  9. G. Yang, H. S. Jain, A. T. Ganjoo, D. H. Zhao, Y. S. Xu, H. D. Zeng, and G. R. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008). [CrossRef] [PubMed]
  10. J. C. Phillips, “Topology of Covalent Non-Crystalline Solids. 1. Short-Range Order in Chalcogenide Alloys,” J. Non-Cryst. Solids 34(2), 153–181 (1979). [CrossRef]
  11. M. F. Thorpe, “Continuous Deformations in Random Networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983). [CrossRef]
  12. K. Tanaka, “Structural phase transitions in chalcogenide glasses,” Phys. Rev. B Condens. Matter 39(2), 1270–1279 (1989). [CrossRef] [PubMed]
  13. P. Boolchand, D. G. Georgiev, and B. Goodman, “Discovery of the intermediate phase in chalcogenide glasses,” J. Optoelectron.. Materials 3(3), 703–720 (2001).
  14. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009). [CrossRef]
  15. V. V. Zigel, A. A. Litvinenko, G. K. Ulyanov, and G. A. Chalabyan, “Ultrasonic dispersive waveguide with a layer of chalcogenide glass on lithium-niobate,” Soviet Phys. Acoustics-USSR 21(1), 77–77 (1975).
  16. Y. Ohmachi, “Acoustooptical Light Diffraction in Thin-Films,” J. Appl. Phys. 44(9), 3928–3933 (1973). [CrossRef]
  17. S. Zembutsu and S. Fukunishi, “Waveguiding properties of (Se,S)-based chalcogenide glass films and some applications to optical waveguide devices,” Appl. Opt. 18(3), 393–399 (1979). [CrossRef] [PubMed]
  18. C. Meneghini, K. Le Foulgoc, E. J. Knystautas, A. Villeneuve, T. Cardinal, and K. A. Richardson, “Ion implantation: an efficient method for doping or fabricating channel chalcogenide glass waveguides,” in Materials Modification by Ion Irradiation, E. J. Knystautas, ed. (1998), pp. 146–153.
  19. K. Turcotte, J. M. Laniel, A. Villeneuve, C. Lopez, K. Richardson, and O. S. A. Osa, “Fabrication and characterization of chalcogenide optical waveguides,” in Integrated Photonics Research, Technical Digest (2000), pp. 305–308.
  20. A. K. Mairaj, A. Fu, H. N. Rutt, and D. W. Hewak, “Optical channel waveguide in chalcogenide (Ga: La: S) glass,” Electron. Lett. 37(19), 1160–1161 (2001). [CrossRef]
  21. A. Feigel, Z. Kotler, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, “Chalcogenide three-dimensional photonic structures,” in Integrated Optics Devices V, G. C. Righini and S. Honkanen, eds. (2001), pp. 249–251.
  22. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001). [CrossRef]
  23. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses,” J. Lightwave Technol. 17(5), 837–842 (1999). [CrossRef]
  24. A. Saliminia, K. Le Foulgoc, A. Villeneuve, and T. Galstian, “Photoinduced Bragg reflectors in As-S-Se/As-S based chalcogenide glass multilayer channel waveguides,” Fiber Integrated Opt. 20(2), 151–158 (2001).
  25. M. Shokooh-Saremi, V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides,” Electron. Lett. 41(13), 738–739 (2005). [CrossRef]
  26. V. G. Ta’eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30(21), 2900–2902 (2005). [CrossRef] [PubMed]
  27. N. J. Baker, H. W. Lee, I. C. M. Littler, C. M. de Sterke, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Sampled Bragg gratings in chalcogenide (As(2)S(3)) rib-waveguides,” Opt. Express 14(20), 9451–9459 (2006). [CrossRef] [PubMed]
  28. K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, “Long-period gratings in chalcogenide (As2S3) rib waveguides,” Electron. Lett. 42(19), 1094–1095 (2006). [CrossRef]
  29. J. Fick, B. Nicolas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson, M. Fischer, and R. Vallee, “Thermally activated silver diffusion in chalcogenide thin films,” Thin Solid Films 418(2), 215–221 (2002). [CrossRef]
  30. R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac. Sci. Technol. A 22(3), 1044–1047 (2004). [CrossRef]
  31. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11(2), 539–546 (2005). [CrossRef]
  32. C. C. Huang and D. W. Hewak, “Silver-doped germanium sulphide glass channel waveguides fabricated by chemical vapour deposition and photo-dissolution process,” Thin Solid Films 500(1–2), 247–251 (2006). [CrossRef]
  33. J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17(7), 1184–1191 (1999). [CrossRef]
  34. J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15(19), 11798–11807 (2007). [CrossRef] [PubMed]
  35. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. F. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express 15(22), 14566–14572 (2007). [CrossRef] [PubMed]
  36. J. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010). [CrossRef] [PubMed]
  37. J. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15(5), 2307–2314 (2007). [CrossRef] [PubMed]
  38. J. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008). [CrossRef] [PubMed]
  39. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, D. Bulla, and B. Luther-Davies, “A protective layer on As2S3 film for photo-resist patterning,” J. Non-Cryst. Solids 354(47–51), 5253–5254 (2008). [CrossRef]
  40. D. Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]
  41. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, and B. Luther-Davies, “Nanoscale phase separation in ultrafast pulsed laser deposited arsenic trisulfide (As2S3) films and its effect on plasma etching,” J. Appl. Phys. 102(8), 083532 (2007). [CrossRef]
  42. A. C. Y. Liu, X. Chen, D. Y. Choi, and B. Luther-Davies, “Annealing-induced reduction in nanoscale heterogeneity of thermally evaporated amorphous As2S3 films,” J. Appl. Phys. 104(9), 093524 (2008). [CrossRef]
  43. D. Y. Choi, S. Madden, D. Bulla, R. P. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010). [CrossRef]
  44. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  45. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  46. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davis, S. Madden, A. Rode, D. Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  47. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength Conversion of High-Speed Phase and Intensity Modulated Signals Using a Highly Nonlinear Chalcogenide Glass Chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]
  48. C. Vigreux-Bercovici, E. Bonhomme, A. Pradel, J. E. Broquin, L. Labadie, and P. Kern, “Transmission measurement at 10.6 µm of Te2As3Se5 rib waveguides on As2S3 substrate,” Appl. Phys. Lett. 90(1), 011110 (2007). [CrossRef]
  49. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008). [CrossRef]
  50. Z. G. Lian, W. J. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009). [CrossRef] [PubMed]
  51. T. Han, S. Madden, D. A. P. Bulla, and B. Luther-Davies, “Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18(18), 19286–19291 (2010). [CrossRef] [PubMed]
  52. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  53. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  54. X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As 24Se64.5 nanowires with a onlinear parameter of 136W−1m−1 at 1550nm,” Opt. Express 18(18), 9 (2010).
  55. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]
  56. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006). [CrossRef] [PubMed]
  57. X. H. Zhang, L. Calvez, V. Seznec, H. L. Ma, S. Danto, P. Houizot, C. Boussard-Pledel, and J. Lucas, “Infrared transmitting glasses and glass-ceramics,” J. Non-Cryst. Solids 352(23–25), 2411–2415 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited