OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26655–26665

Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26655-26665 (2010)
http://dx.doi.org/10.1364/OE.18.026655


View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The aim of this paper is to present an overview of the recent achievements of our group in the fabrication and optical characterizations of As2S3 microstructured optical fibers (MOFs). Firstly, we study the synthesis of high purity arsenic sulfide glasses. Then we describe the use of a versatile process using mechanical drilling for the preparation of preforms and then the drawing of MOFs including suspended core fibers. Low losses MOFs are obtained by this way, with background level of losses reaching less than 0.5 dB/m. Optical characterizations of these fibers are then reported, especially dispersion measurements. The feasibility of all-optical regeneration based on a Mamyshev regenerator is investigated, and the generation of a broadband spectrum between 1 µm and 2.6 µm by femto second pumping around 1.5 µm is presented.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(160.2750) Materials : Glass and other amorphous materials
(160.4330) Materials : Nonlinear optical materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Chalcogenide Glass

History
Original Manuscript: August 30, 2010
Revised Manuscript: November 6, 2010
Manuscript Accepted: November 6, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

Citation
M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, L. Brilland, W. Gao, T. Suzuki, Y. Ohishi, and F. Smektala, "Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources," Opt. Express 18, 26655-26665 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26655


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  2. G. P. Agrawal, Application of nonlinear fiber optics”, Academic Press, Boston (2001).
  3. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]
  5. F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998). [CrossRef]
  6. F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000). [CrossRef]
  7. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000). [CrossRef]
  8. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008). [CrossRef] [PubMed]
  9. F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 58803 (2007).
  10. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009). [CrossRef]
  11. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non silica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2053 (2005).
  12. R. Frerichs, “New optical glasses with good transparency in the infrared,” J. Opt. Soc. Am. 43(12), 1153–1157 (1953). [CrossRef]
  13. J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982). [CrossRef]
  14. S. Shibata, T. Manabe, and M. Horiguchi, “Preparation of Ge-S Glass Fibers with Reduced OH, SH Content,” Jpn. J. Appl. Phys. 20(1), 13–16 (1981). [CrossRef]
  15. C. T. Moynihan, P. B. Macedo, N. S. Maklad, R. Mohr, and R. Howard, “Intrinsic and impurity infrared absorption in As-Se glass,” J. Non-Cryst. Solids 17(3), 369–385 (1975). [CrossRef]
  16. S. Shibata, Y. Terunuma, and T. Manabe, “Sulfide glass fibers for infrared transmission,” Mater. Res. Bull. 16(6), 703–714 (1981). [CrossRef]
  17. G. G. Devyatykh, E. M. Dianov, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Fiber waveguides from high purity chalcogenide glass,” Russ. High Purity Substances J. 1, 7–36 (1991).
  18. D. L. Wood and J. Tauc, “Weak absorption tails in amorphous semiconductors,” Phys. Rev. B 5(8), 3144–3151 (1972). [CrossRef]
  19. M. F. Churbanov, “High purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995). [CrossRef]
  20. G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, E. M. Dianov, and V. G. Plotnichenko, “Recent developments in As-S glass fibres,” J. of Non-Cryst. Solids 256&257, 318–22 (1999).
  21. M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron.Adv. Mater. 3, 341–349 (2001).
  22. G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mate. Rapid Commun. 3(7), 669–671 (2009).
  23. M. C. J. Large, L. Poladian, G. Barton, and M. Eijkelenborg, “Microstructured polymer optical fibers”, Springer (2008).
  24. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  25. G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Nonlinear optical properties of chalcogenide glasses: comparison between Mach–Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001). [CrossRef]
  26. V. G. Borisevich, V. G. Plotnichenko, I. V. Scripachev, and M. F. Churbanov, “Extension coefficient of SH groups in vitreous arsenic sulphide,” Russ. High Purity Substances J.. 4, 759–762 (1990).
  27. L. Brilland, J. Troles, P. Houizot, F. Désévédavy, Q. Coulombier, G. Renversez, T. Chartier, T. N. Nuyen, J.-L. Adam, and N. Traynor, “Interfaces impact on the transmission of chalcogenides photonic crystal fibres,” J. Ceram. Soc. Jpn. 116(1358), 1024–1027 (2008). [CrossRef]
  28. J. Troles, L. Brilland, F. Smektala, P. Houizot, F. Désévédavy, Q. Coulombier, N. Traynor, T. Chartier, T. N. Nguyen, J. L. Adam, and G. Renversez, “Chalcogenide Microstructured Fibers for Infrared Systems, Elaboration Modelization, and Characterization,” Fiber Inter. Opt. 28(1), 11–26 (2009). [CrossRef]
  29. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010). [CrossRef] [PubMed]
  30. J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009). [CrossRef]
  31. M. Szpulak and S. Février, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009). [CrossRef]
  32. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” Proc. European Conference on Optical Communication, ECOC 98, 475–476 (1998).
  33. L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005). [CrossRef] [PubMed]
  34. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007). [CrossRef] [PubMed]
  35. C. Finot, T. N. Nguyen, J. Fatome, T. Chartier, L. Bramerie, M. Gay, S. Pitois, and J. C. Simon, “Numerical study of an optical regenerator exploiting self-phase modulation and spectral offset filtering at 40 Gbit/s,” Opt. Commun. 281(8), 2252–2264 (2008). [CrossRef]
  36. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited