OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26666–26674

Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers

R. J. Weiblen, A. Docherty, J. Hu, and C. R. Menyuk  »View Author Affiliations


Optics Express, Vol. 18, Issue 25, pp. 26666-26674 (2010)
http://dx.doi.org/10.1364/OE.18.026666


View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We computationally investigate supercontinuum generation in an As2S3 solid core photonic crystal fiber (PCF) with a hexagonal cladding of air holes. We study the effect of varying the system (fiber and input pulse) parameters on the output bandwidth. We find that there is significant variation of the measured bandwidth with small changes in the system parameters due to the complex structure of the supercontinuum spectral output. This variation implies that one cannot accurately calculate the experimentally-expected bandwidth from a single numerical simulation. We propose the use of a smoothed and ensemble-averaged bandwidth that is expected to be a better predictor of the bandwidth of the supercontinuum spectra that would be produced in experimental systems. We show that the fluctuations are considerably reduced, allowing us to calculate the bandwidth more accurately. Using this smoothed and ensemble averaged bandwidth, we maximize the output bandwidth with a pump wavelength of 2.8 μm and obtain a supercontinuum spectrum that extends from 2.5 μm to 6.2 μm with an uncertainty of ± 0.5 μm. The optimized bandwidth is consistent with prior work, but with a significantly increased accuracy.

© 2010 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Chalcogenide Glass

History
Original Manuscript: September 22, 2010
Revised Manuscript: November 15, 2010
Manuscript Accepted: November 15, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

Citation
R. J. Weiblen, A. Docherty, J. Hu, and C. R. Menyuk, "Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers," Opt. Express 18, 26666-26674 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26666


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  2. J. M. Dudley, and J. R. Taylor, "Ten years of nonlinear optics in photonic crystal fibre," Nat. Photonics 3, 85-90 (2009). [CrossRef]
  3. X. Feng, A. Mairaj, D. Hewak, and T. Monro, "Nonsilica Glasses for Holey Fibers," J. Lightwave Technol. 23, 2046-2054 (2005). [CrossRef]
  4. P. Rolfe, "In vivo near-infrared spectroscopy," Annu. Rev. Biomed. Eng. 2, 715-754 (2000). [CrossRef]
  5. R. Holzwarth, T. Udem, T. Hänsch, J. Knight, W. Wadsworth, and P. Russell, "Optical Frequency Synthesizer for Precision Spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  6. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  7. D. I. Yeom, E. C. Mgi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett. 33, 660-662 (2008). [CrossRef] [PubMed]
  8. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008). [CrossRef] [PubMed]
  9. M. R. Lamont, B. Luther-Davies, D. Choi, S. Madden, and B. J. Eggleton, "Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 W/m) As2S3 chalcogenide planar waveguide," Opt. Express 16, 14938-14944 (2008). [CrossRef] [PubMed]
  10. J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, F. Vittoria, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Non-silica Microstructured Optical Fibers For Mid-IR Supercontinuum Generation From 2 μm-5 μm," IEEE J. Sel. Top. Quantum Electron. 13(3), 738-749 (2007). [CrossRef]
  11. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers," Opt. Express 18, 6722-6739 (2010). [CrossRef] [PubMed]
  12. B. Ung, and M. Skorobogatiy, "Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared," Opt. Express 18, 8647-8659 (2010). [CrossRef] [PubMed]
  13. W. Q. Zhang, S. V. Afshar, and T. M. Monro, "A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation," Opt. Express 17, 19311-19327 (2009). [CrossRef]
  14. J. Dudley, and S. Coen, "Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002). [CrossRef]
  15. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. S. Russell, "Spectrally smooth supercontinuum from 350 nm to 3 μm in subcentimeter lengths of soft-glass photonic crystal fibers," Opt. Express 14, 4928-4934 (2006). [CrossRef] [PubMed]
  16. R. J. Weiblen, J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Maximizing the Supercontinuum Bandwidth in As2S3 Chalcogenide Photonic Crystal Fibers," in Proc. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, paper CTuX7, (2010).
  17. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, "Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications," IEEE J. Sel. Top. Quantum Electron. 15, 114-119 (2009). [CrossRef]
  18. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  19. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Computational study of 3-5 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm," Opt. Lett. 35, 2907-2909 (2010). [CrossRef] [PubMed]
  20. O. V. Sinkin, R. Holzlhner, J. Zweck, and C. R. Menyuk, "Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems," J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  21. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited