OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26686–26694

Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber

M.D. Pelusi, F. Luan, D.-Y. Choi, S.J. Madden, D.A.P. Bulla, B. Luther-Davies, and B.J. Eggleton  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26686-26694 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first demonstration of optical phase conjugation (OPC) transmission of phase encoded and wavelength-division multiplexed (WDM) signals by the Kerr effect in a planar structured waveguide. The phase conjugated electric field of the signal is produced by four wave mixing pumped by a CW laser during co-propagating with the signal in a highly nonlinear waveguide fabricated in As2S3 glass. Experiments demonstrate the capability of the device to perform dispersion-free transmission through up to 225 km of standard single mode fiber for a 3 × 40 Gb/s WDM signal, with its channels encoded as return-to-zero differential phase shift keying and spaced either 100 or 200 GHz apart. This work represents an important milestone towards demonstrating advanced signal processing of high-speed and broadband optical signals in compact planar waveguides, with the potential for monolithic optical integration.

© 2010 OSA

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.5040) Fourier optics and signal processing : Phase conjugation
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Chalcogenide Glass

Original Manuscript: November 12, 2010
Manuscript Accepted: November 22, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

M.D. Pelusi, F. Luan, D.-Y. Choi, S.J. Madden, D.A.P. Bulla, B. Luther-Davies, and B.J. Eggleton, "Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber," Opt. Express 18, 26686-26694 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17252 . [CrossRef] [PubMed]
  2. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, and T. Morioka, “isJ. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, O. Tadanaga, H. Miyazawa, and M. Asobe, “Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit∕s (103×10 Gbit∕s) signals in PPLN waveguide,” Electron. Lett. 39(15), 1144 (2003). [CrossRef]
  3. M. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999). [CrossRef]
  4. I. Brener, B. Mikkelsen, G. Raybon, R. Harel, K. Parameswaran, J. R. Kurz, and M. M. Fejer, “160 Gbit/s wavelength shifting and phase conjugation using periodically poled LiNbO3 waveguide parametric converter,” Electron. Lett. 36(21), 1788–1790 (2000). [CrossRef]
  5. H. Hu, R. Nouroozi, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “Polarization-insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK signals using a Ti:PPLN waveguide,” Appl. Phys. B 101(4), 875–882 (2010), doi:. [CrossRef]
  6. X. Wu, W.-R. Peng, V. Arbab, J. Wang, and A. Willner, “Tunable optical wavelength conversion of OFDM signal using a periodically-poled lithium niobate waveguide,” Opt. Express 17(11), 9177–9182 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-11-9177 . [CrossRef] [PubMed]
  7. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007). [CrossRef]
  8. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21(3), 182–184 (2009). [CrossRef]
  9. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16735 . [CrossRef] [PubMed]
  10. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As(2)S(3) planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3514 . [CrossRef] [PubMed]
  11. M. D. Pelusi, F. Luan, S. Madden, D.-Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010). [CrossRef]
  12. S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber. Commun. Rep. 3(1), 1–24 (2005). [CrossRef]
  13. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quant. 12(4), 505–520 (2006). [CrossRef]
  14. H. Hu, R. Nouroozi, R. Ludwig, C. Schmidt-Langhorst, H. Suche, W. Sohler, and C. Schubert, “110 km transmission of 160 Gbit/s RZ-DQPSK signals by midspan polarization-insensitive optical phase conjugation in a Ti:PPLN waveguide,” Opt. Lett. 35(17), 2867–2869 (2010). [CrossRef] [PubMed]
  15. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18119 . [CrossRef] [PubMed]
  16. J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s conventional and carrier-suppressed RZ signals transmission over 200 km standard fiber by using mid-span optical phase conjugation (invited, OECC Awarded),” IEICE Trans. on Comm , E 86-B, 1555–1561 (2003).
  17. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007). [CrossRef] [PubMed]
  18. Z. Pan, C. Yub, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010). [CrossRef]
  19. G. Wellbrock and T. J. Xia, “The road to 100g deployment [Commentary],” IEEE Commun. Mag. 48(3), S14–S18 (2010). [CrossRef]
  20. S. Moro, E. Myslivets, J. R. Windmiller, N. Alic, J. M. Chavez Boggio, and S. Radic, “Synthesis of equalized broadband parametric gain by localized dispersion mapping,” IEEE Photon. Technol. Lett. 20(23), 1971–1973 (2008). [CrossRef]
  21. J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-439 . [CrossRef] [PubMed]
  22. M. R. Lamont, C.M de Sterke, and B.J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15, 9458–9463 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9458 . [CrossRef] [PubMed]
  23. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14414 . [CrossRef] [PubMed]
  24. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]
  25. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, “Low-loss and low-dispersion-slope highly nonlinear fibers,” J. Lightwave Technol. 23(11), 3615–3624 (2005). [CrossRef]
  26. Y. K. Lizé, X. Wu, M. Nazarathy, Y. Atzmon, L. Christen, S. Nuccio, M. Faucher, N. Godbout, and A. E. Willner, “Chromatic dispersion tolerance in optimized NRZ-, RZ- and CSRZ-DPSK demodulation,” Opt. Express 16(6), 4228–4236 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4228 . [CrossRef] [PubMed]
  27. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  28. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18866 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited