OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 25 — Dec. 6, 2010
  • pp: 26720–26727

Chalcogenide glass microsphere laser

Gregor R. Elliott, G. Senthil Murugan, James S. Wilkinson, Michalis N. Zervas, and Daniel W. Hewak  »View Author Affiliations

Optics Express, Vol. 18, Issue 25, pp. 26720-26727 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (963 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action.

© 2010 OSA

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.4780) Lasers and laser optics : Optical resonators
(160.2750) Materials : Glass and other amorphous materials
(230.5750) Optical devices : Resonators

ToC Category:
Chalcogenide Glass

Original Manuscript: September 21, 2010
Revised Manuscript: November 7, 2010
Manuscript Accepted: November 23, 2010
Published: December 6, 2010

Virtual Issues
Chalcogenide Glass (2010) Optics Express

Gregor R. Elliott, G. Senthil Murugan, James S. Wilkinson, Michalis N. Zervas, and Daniel W. Hewak, "Chalcogenide glass microsphere laser," Opt. Express 18, 26720-26727 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tong, A. Liu, H. Lv, Y. Wu, X. Yi, and Q. Li, “Fabrication of glass microspheres using the powders floating method”, in Proceedings of the 2010 Symposium on Photonics and Optoelectronics, Chengdu, China June 19–21, 2010.
  2. B. E. Little, J.-P. Laine, and H. A. Haus, “Analytic Theory of Coupling from Tapered Fibers and Half-Blocks into Microsphere Resonators,” J. Lightwave Technol. 17(4), 704–715 (1999). [CrossRef]
  3. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006). [CrossRef] [PubMed]
  4. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]
  5. M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9(1-4), 12–17 (1998). [CrossRef]
  6. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated. Emission into Optical Whispering Modes of Spheres,” Phys. Rev. 124(6), 1807–1809 (1961). [CrossRef]
  7. L. Collot, V. Lefevre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, “Very high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23(5), 327–334 (1993). [CrossRef]
  8. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996). [CrossRef] [PubMed]
  9. M. Cai and K. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26(12), 884–886 (2001). [CrossRef]
  10. K. Miura, K. Tanaka, and K. Hirao, “Laser oscillation of a Nd3+-doped fluoride glass microsphere,” J. Mater. Sci. Lett. 15(21), 1854–1857 (1996). [CrossRef]
  11. X. Peng, F. Song, S. Jiang, N. Peyghambarian, M. Kuwata-Gonokami, and L. Xu, “Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser,” Appl. Phys. Lett. 82(10), 1497–1499 (2003). [CrossRef]
  12. T. Schweizer, Rare-earth-doped Gallium lanthanum sulphide glasses for mid-infrared fibre lasers (University of Southampton, 2000) http://www.orc.soton.ac.uk/viewpublication.html?pid=1510T
  13. T. Schweizer, D. W. Hewak, D. N. Payne, T. Jensen, and G. Huber, “Rare-earth doped chalcogenide glass laser,” Electron. Lett. 32(7), 666–667 (1996). [CrossRef]
  14. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33(5), 414–416 (1997). [CrossRef]
  15. A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1381–1388 (2002). [CrossRef]
  16. P. N. Kumta and S. H. Risbud, “Novel glasses in rare-earth sulphide systems,” Ceramic Bull. 69, 1977–1984 (1990).
  17. D. W. Hewak, “Chalcogenide glasses for photonics device applications”, in Photonic Glasses and Glass Ceramics, editor G.S. Murugan, ed. (Research Signpost, Kerala, India, 2010) Chap. 2 ISBN: 978–81–308–0375–3.
  18. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007). [CrossRef] [PubMed]
  19. G. R. Elliott, Optical microresonators in chalcogenide glass (University of Southampton, 2009) http://www.orc.soton.ac.uk/viewpublication.html?pid=4445
  20. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123–042125 (2008). [CrossRef]
  21. K. Sasagawa, K. Kusawake, J. Ohta, and M. Nunoshita, “Nd-doped tellurite glass microsphere laser,” Electron. Lett. 38(22), 1355–1357 (2002). [CrossRef]
  22. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited