OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 26799–26805

Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance

K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 26799-26805 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The focal field of high NA lens axicon with a binary-phase optical component is calculated by using vector diffraction theory. Numerical results show that for a radially polarized Bessel Gaussian input field, the proposed system generates a subwavelength (0.395λ) longitudinally polarized beam with large uniform depth of focus (approximately 6 λ).

© 2010 OSA

OCIS Codes
(210.3810) Optical data storage : Magneto-optic systems
(320.7160) Ultrafast optics : Ultrafast technology
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Physical Optics

Original Manuscript: July 15, 2010
Revised Manuscript: October 24, 2010
Manuscript Accepted: November 5, 2010
Published: December 7, 2010

K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, "Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance," Opt. Express 18, 26799-26805 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000). [CrossRef]
  2. E. Yew and C. Sheppard, “Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams,” Opt. Commun. 275(2), 453–457 (2007). [CrossRef]
  3. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85(25), 6239–6241 (2004). [CrossRef]
  4. R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing,” Phys. Rev. D 42(5), 1807–1818 (1990). [CrossRef] [PubMed]
  5. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43(22), 4322–4327 (2004). [CrossRef] [PubMed]
  6. L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191(3-6), 161–172 (2001). [CrossRef]
  7. C. Liu and S.-H. Park, “Numerical analysis of an annular-aperture solid immersion lens,” Opt. Lett. 29(15), 1742–1744 (2004). [CrossRef] [PubMed]
  8. Y. Xu, J. Singh, C. J. R. Sheppard, and N. Chen, “Ultra long high resolution beam by multi-zone rotationally symmetrical complex pupil filter,” Opt. Express 15(10), 6409–6413 (2007). [CrossRef] [PubMed]
  9. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16(7), 523–525 (1991). [CrossRef] [PubMed]
  10. Z. Jaroszewicz, J. Sochacki, A. Kolodziejczyk, and L. R. Staroński, “Apodized annular-aperture logarithmic axicon: smoothness and uniformity of intensity distributions,” Opt. Lett. 18(22), 1893–1895 (1993). [CrossRef] [PubMed]
  11. J. Sochacki, S. Bará, Z. Jaroszewicz, and A. Kołodziejczyk, “Phase retardation of the uniform-intensity axilens,” Opt. Lett. 17(1), 7–9 (1992). [CrossRef] [PubMed]
  12. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31(25), 5326–5330 (1992). [CrossRef] [PubMed]
  13. G. Mikula, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc, and M. Sypek, “Imaging with extended focal depth by means of lenses with radial and angular modulation,” Opt. Express 15(15), 9184–9193 (2007). [CrossRef] [PubMed]
  14. D. Mas, J. Espinosa, J. Perez, and C. Illueca, “Three dimensional analysis of chromatic aberration in diffractive elements with extended depth of focus,” Opt. Express 15(26), 17842–17854 (2007). [CrossRef] [PubMed]
  15. W. H. Steel, P. Mollet ed. (Pergamon, Oxford, UK), 181 − 192(1960)
  16. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15(9), 2383–2390 (1998). [CrossRef]
  17. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a converging aberrated lens,” J. Opt. Soc. Am. A 16(1), 191–197 (1999). [CrossRef]
  18. J. Pu, H. Zhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39(3), 803–806 (2000). [CrossRef]
  19. A. Burvall, K. Kołacz, Z. Jaroszewicz, and A. T. Friberg, “Simple lens axicon,” Appl. Opt. 43(25), 4838–4844 (2004). [CrossRef] [PubMed]
  20. K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6(10), 785–787 (2008). [CrossRef]
  21. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  22. C.-C. Sun and C.-K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28(2), 99–101 (2003). [CrossRef] [PubMed]
  23. T. G. Jabbour and S. M. Kuebler, “Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates,” Opt. Express 14(3), 1033–1043 (2006). [CrossRef] [PubMed]
  24. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  25. J. Chen and Y. Yu, “The focusing property of vector Bessel–Gauss beams by a high numerical aperture objective,” Opt. Commun. 283(9), 1655–1660 (2010). [CrossRef]
  26. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited