OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 26937–26945

Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy

Western Bolaños, Joan J. Carvajal, Xavier Mateos, Ganapathy Senthil Murugan, Ananth Z. Subramanian, James S. Wilkinson, Eugenio Cantelar, Daniel Jaque, Ginés Lifante, Magdalena Aguiló, and Francisco Díaz  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 26937-26945 (2010)
http://dx.doi.org/10.1364/OE.18.026937


View Full Text Article

Enhanced HTML    Acrobat PDF (2379 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Buried channel waveguides were fabricated by liquid phase epitaxial growth of a lattice-matched KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 film on a microstructured KY(WO4)2 substrate. Channels were transferred to the substrates by standard photolithography and Ar-ion milling. The bottom and sidewalls of the milled channels were smooth enough (rms roughness = 70 nm and 20 nm, respectively) to favour the epitaxial growth of the active layer without defects at the boundary of substrate/epitaxial layer. The refractive index contrast was sufficient to enable light confinement and guided modes with low scattering losses were observed at wavelengths between 1440 nm and 1640 nm. CW laser operation at 1840 nm at room temperature was observed with feedback provided only by Fresnel reflection at the end faces, with slope efficiencies of 4% and 9% for TE and TM polarizations, respectively.

© 2010 OSA

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3580) Lasers and laser optics : Lasers, solid-state
(230.7400) Optical devices : Waveguides, slab
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Integrated Optics

History
Original Manuscript: September 20, 2010
Revised Manuscript: November 10, 2010
Manuscript Accepted: November 12, 2010
Published: December 7, 2010

Citation
Western Bolaños, Joan J. Carvajal, Xavier Mateos, Ganapathy Senthil Murugan, Ananth Z. Subramanian, James S. Wilkinson, Eugenio Cantelar, Daniel Jaque, Ginés Lifante, Magdalena Aguiló, and Francisco Díaz, "Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy," Opt. Express 18, 26937-26945 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-26937


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double heterostructure devices,” Nature 389(6649), 362–364 (1997). [CrossRef]
  2. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Unidirectional bistability in semiconductor waveguide lasers,” Appl. Phys. Lett. 80(17), 3051–3053 (2002). [CrossRef]
  3. J. I. Mackenzie, C. Li, and D. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39(3), 493–500 (2003). [CrossRef]
  4. A. Rameix, C. Borel, B. Chambaz, B. Ferrand, D. P. Sheperd, T. J. Warburton, D. C. Hanna, and A. C. Tropper, “An efficient diode-pumped, 2 μm Tm:YAG waveguide laser,” Opt. Commun. 142(4-6), 239–243 (1997). [CrossRef]
  5. U. Griebner and H. Schönnagel, “Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide,” Opt. Lett. 24(11), 750–752 (1999). [CrossRef]
  6. M. Hempstead, J. S. Wilkinson, and L. Reekie, “Wave-guide lasers operating at 1084 nm in neodymium-diffused lithium-niobate,” IEEE Photon. Technol. Lett. 4(8), 852–855 (1992). [CrossRef]
  7. P. Becker, R. Brinkmann, M. Dinand, W. Sohler, and H. Suche, “Er-diffused Ti:LiNbO3 waveguide laser of 1563 nm and 1576 nm emission wavelengths,” Appl. Phys. Lett. 61(11), 1257–1259 (1992). [CrossRef]
  8. E. Cantelar, J. A. Sanz-García, G. Lifante, F. Cussó, and P. L. Pernas, “Single polarizad Tm3+ laser in Zn-diffused LiNbO3 channel waveguides,” Appl. Phys. Lett. 86(16), 161119 (2005). [CrossRef]
  9. J. P. de Sandro, J. K. Jones, D. P. Shepherd, M. Hempstead, J. Wang, and A. C. Tropper, “Non-photorefractive CW Tm-in-diffused Ti:LiNbO3 waveguide laser operating at room temperature,” IEEE Photon. Technol. Lett. 8(2), 209–211 (1996). [CrossRef]
  10. P. Rogin and J. Hulliger, “Epitaxial Nd:YLF linear waveguide laser,” Opt. Lett. 22(22), 1701–1703 (1997). [CrossRef]
  11. E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35(5), 398–400 (1999). [CrossRef]
  12. P. M. Peters, D. S. Funk, A. P. Peskin, D. L. Veasey, N. A. Sanford, S. N. Houde-Walter, and J. S. Hayden, “Ion-exchanged waveguide lasers in Er3+/Yb3+ codoped silicate glass,” Appl. Opt. 38(33), 6879–6886 (1999). [CrossRef]
  13. P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332–1334 (2003). [CrossRef]
  14. A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser,” Opt. Express 17(6), 4412–4418 (2009). [CrossRef] [PubMed]
  15. H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb(3+):(Gd,Lu)(2)O(3) channel waveguide laser at 976.8 nm,” Opt. Lett. 34(18), 2718–2720 (2009). [CrossRef] [PubMed]
  16. Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31(1), 53–55 (2006). [CrossRef] [PubMed]
  17. F. M. Bain, A. A. Lagatsky, S. V. Kurilchick, V. E. Kisel, S. A. Guretsky, A. M. Luginets, N. A. Kalanda, I. M. Kolesova, N. V. Kuleshov, W. Sibbett, and C. T. Brown, “Continuous-wave and Q-switched operation of a compact, diode-pumped Yb3+:KY(WO4)2 planar waveguide laser,” Opt. Express 17(3), 1666–1670 (2009). [CrossRef] [PubMed]
  18. S. Rivier, X. Mateos, V. Petrov, U. Griebner, Y. E. Romanyuk, C. N. Borca, F. Gardillou, and M. Pollnau, “Tm:KY(WO(4))(2) waveguide laser,” Opt. Express 15(9), 5885–5892 (2007). [CrossRef] [PubMed]
  19. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009). [CrossRef]
  20. D. Geskus, S. Aravazhi, C. Grivas, K. Wörhoff, and M. Pollnau, “Microstructured KY(WO(4))(2):Gd(3+), Lu(3+), Yb(3+) channel waveguide laser,” Opt. Express 18(9), 8853–8858 (2010). [CrossRef] [PubMed]
  21. W. Bolaños, J. J. Carvajal, M. Cinta Pujol, X. Mateos, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial growth of lattice matched KY1-x-yGdxLuy(WO4)2 thin films on KY(WO4)2 substrates for waveguiding applications,” Cryst. Growth Des. 9(8), 3525–3531 (2009). [CrossRef]
  22. W. Bolaños, J. J. Carvajal, X. Mateos, M. C. Pujol, N. Thilmann, V. Pasiskevicius, G. Lifante, M. Aguiló, and F. Díaz, “Epitaxial layers of KY1-x-yGdxLuy(WO4)2 doped with Er3+ and Tm3+ for planar waveguide lasers,” Opt. Mater. 32(3), 469–474 (2010). [CrossRef]
  23. W. Bolaños, J. J. Carvajal, X. Mateos, M. Aguiló, and F. Díaz, “Exploring waveguiding properties of heavily doped Yb3+:KLu(WO4)2 epitaxial layers,” IEEE Photon. J. 2(3), 482–489 (2010). [CrossRef]
  24. O. Silvestre, M. C. Pujol, R. Solé, W. Bolaños, J. J. Carvajal, J. Massons, M. Aguiló, and F. Díaz, “Ln3+:KLu(WO4)2/ KLu(WO4)2 epitaxial layers:crystal growth and physical characterisation,” Mater. Sci. Eng. B 146(1-3), 59–65 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited