OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 26965–26977

Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides

H. Kurt, K. Üstün, and L. Ayas  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 26965-26977 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1649 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate slow light propagation in monomode photonic crystal waveguides with different spectral features such as constant group index, high bandwidth and low group velocity dispersion. The form of the waveguide mode alters dramatically and spans three different spectral intervals by tuning the size of the boundary holes. Namely, slope of the band gap guided mode changes sign from negative to positive toward the Brillouin zone edge. In between there is a transition region where modes have nearly zero slopes. Maximum group index occurs at these turning points at the expense of high dispersion and narrow bandwidth. The apparent trade-off relationship between group index and bandwidth is revealed systematically. We show that as the radius of the innermost hole is increased above a certain value, the former one decreases and the latter one increases both exponentially but with a different ratio. The product of average group index and bandwidth is defined as a figure of merit which reaches up to a value of approximately 0.30 after a detailed parametric search. The findings of the frequency domain analysis obtained by plane wave expansion method are confirmed via finite-difference time-domain study.

© 2010 OSA

OCIS Codes
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: August 30, 2010
Revised Manuscript: October 27, 2010
Manuscript Accepted: December 6, 2010
Published: December 8, 2010

H. Kurt, K. Üstün, and L. Ayas, "Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides," Opt. Express 18, 26965-26977 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006). [CrossRef]
  2. T. F. Krauss, “Why do we need slow light,” Nat. Photonics 2(8), 448–450 (2008). [CrossRef]
  3. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  4. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005). [CrossRef] [PubMed]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001). [CrossRef] [PubMed]
  7. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D Appl. Phys. 40(9), 2659–2665 (2007). [CrossRef]
  8. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  9. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon. 2(3), 287–318 (2010). [CrossRef]
  10. L. Hau, S. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  11. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers-capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005). [CrossRef]
  12. J. D. Joannopoulas, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of the Light. Princeton, NJ: Princeton Univ. Press, (1995).
  13. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  14. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006). [CrossRef] [PubMed]
  15. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  16. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007). [CrossRef] [PubMed]
  17. A. Yu. Petrove and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85(21), 4866–4868 (2004). [CrossRef]
  18. H. Kurt, H. Benisty, T. Melo, O. Khayam, and C. Cambournac, “Slow-light regime and critical coupling in highly multimode corrugated waveguides,” J. Opt. Soc. Am. B 25(12), C1–C14 (2008). [CrossRef]
  19. J. Ma and C. Jiang, “Demonstration of Ultraslow Modes in Asymmetric Line-Defect Photonic Crystal Waveguides,” IEEE Photon. Technol. Lett. 20(14), 1237–1239 (2008). [CrossRef]
  20. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystal Waveguides,” IEEE Photon. Technol. Lett. 21(20), 1571–1573 (2009). [CrossRef]
  21. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  22. S. Rawal, R. K. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17(16), 13315–13325 (2009). [CrossRef] [PubMed]
  23. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express 18(6), 5942–5950 (2010). [CrossRef] [PubMed]
  24. O. Khayam and H. Benisty, “General recipe for flatbands in photonic crystal waveguides,” Opt. Express 17(17), 14634–14648 (2009). [CrossRef] [PubMed]
  25. R. Hao, E. Cassan, H. Kurt, J. Hou, X. Le Roux, D. Marris-Morini, L. Vivien, G. Dingshan, Z. Zhou, and X. Zhang, “Novel Kind of Semislow Light Photonic Crystal Waveguides With Large Delay-Bandwidth Product,” IEEE Photon. Technol. Lett. 22(11), 844–846 (2010). [CrossRef]
  26. L. Dai and C. Jiang, “Ultrawideband Low Dispersion Slow Light Waveguides,” J. Lightwave Technol. 27(14), 2862–2868 (2009). [CrossRef]
  27. L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay-bandwidth product,” Appl. Phys. B 95(1), 105–111 (2009). [CrossRef]
  28. J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44(8), 763–769 (2008). [CrossRef]
  29. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26(11), 1381–1386 (2008). [CrossRef]
  30. A. Taflove, Computational Electrodynamics – The Finite-Difference Time Domain Method. Norwood, MA: Artech House, 2000.
  31. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  32. A. Petrov, M. Krause, and M. Eich, “Backscattering and disorder limits in slow light photonic crystal waveguides,” Opt. Express 17(10), 8676–8684 (2009). [CrossRef] [PubMed]
  33. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005). [CrossRef]
  34. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (800 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited