OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 26995–27003

3D microlasers from self-assembled cholesteric liquid-crystal microdroplets

M. Humar and I. Muševič  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 26995-27003 (2010)
http://dx.doi.org/10.1364/OE.18.026995


View Full Text Article

Enhanced HTML    Acrobat PDF (1957 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a tunable and omnidirectional microlaser in the form of a microdroplet of a dye-doped, cholesteric liquid crystal in a carrier fluid. The cholesteric forms a Bragg-onion optical microcavity and the omnidirectional 3D lasing is due to the stimulated emission of light from the dye molecules in the liquid crystal. The lasing wavelength depends solely on the natural helical period of the cholesteric and can be tuned by varying the temperature. Millions of microlasers can be formed simply by mixing a liquid crystal, a laser dye and a carrier fluid, thus providing microlasers for soft-matter photonic devices.

© 2010 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.1480) Optical devices : Bragg reflectors
(160.1585) Materials : Chiral media
(140.3945) Lasers and laser optics : Microcavities
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 21, 2010
Revised Manuscript: November 11, 2010
Manuscript Accepted: November 19, 2010
Published: December 8, 2010

Citation
M. Humar and I. Muševič, "3D microlasers from self-assembled cholesteric liquid-crystal microdroplets," Opt. Express 18, 26995-27003 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-26995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. G. Sullivan, and D. G. Hall, "Radiation in spherically symmetric structures, I. the coupled-amplitude equations for vector spherical waves," Phys. Rev. A 50, 2701-2707 (1994). [CrossRef] [PubMed]
  2. P. G. De Gennes, and J. Prost, The physics of liquid crystals (Oxford University Press, 1993).
  3. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998). [CrossRef]
  4. B. Taheri, A. Munoz, P. Palffy-Muhoray, and R. Twieg, "Low threshold lasing in cholesteric liquid crystals," Mol. Cryst. Liq. Cryst. (Phila. Pa.) 358, 73-82 (2001). [CrossRef]
  5. E. Alvarez, M. He, A. F. Munoz, P. Palffy-Muhoray, S. V. Serak, B. Taheri, and R. Twieg, "Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with dyes," Mol. Cryst. Liq. Cryst. (Phila. Pa.) 369, 75-82 (2001). [CrossRef]
  6. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, "Enhanced emission from liquid-crystal lasers," J. Appl. Phys. 97, 023103 (2004). [CrossRef]
  7. A. D. Ford, S. M. Morris, and H. J. Coles, "Photonics and lasing in liquid crystals," Mater. Today 9, 36-42 (2006). [CrossRef]
  8. S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, H. Takezoe, S. Nishimura, and G. Suzaki, "Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer," Appl. Phys. Lett. 90, 261108 (2007). [CrossRef]
  9. F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2009). [CrossRef]
  10. H. Coles, and S. Morris, "Liquid-crystal lasers," Nat. Photonics 4, 676685 (2010). [CrossRef]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  12. J. L. Jewell, S. L. McCall, Y. H. Lee, A. Scherer, A. C. Gossard, and J. H. English, "Lasing characteristics of GaAs microresonators," Appl. Phys. Lett. 54, 1400-1402 (1989). [CrossRef]
  13. F. Treussart, N. Dubreuil, J. C. Knight, V. Sandoghdar, J. Hare, V. Lefcvre-Seguin, J.-M. Raimond, and S. Haroche, "Microlasers based on silica microspheres," Ann. Telecommun. 52, 557-568 (1997).
  14. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II," Nat. Mater. 1, 111-113 (2002). [CrossRef]
  15. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature 460, 1110-1112 (2009). [CrossRef] [PubMed]
  16. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Notzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007). [CrossRef]
  17. D. Brady, G. Papen, and J. E. Sipe, "Spherical distributed dielectric resonators," J. Opt. Soc. Am. B 10, 644-657 (1993). [CrossRef]
  18. G. N. Burlak, "Optical radiation from coated microsphere with active core," Phys. Lett. A 299, 94-101 (2002). [CrossRef]
  19. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Modal analysis of Bragg onion resonators," Opt. Lett. 29, 424-426 (2004). [CrossRef] [PubMed]
  20. A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanley, R. Houdre, and U. Oesterle, "Lasing properties of disk microcavity based on a circular Bragg reflector," Appl. Phys. Lett. 75, 3051-3053 (1999). [CrossRef]
  21. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, "InGaAsP annular Bragg lasers: theory, applications and modal properties," IEEE J. Sel. Top. Quantum Electron. 11, 476-484 (2005). [CrossRef]
  22. J. Scheuer, W. M. J. Green, G. DeRose, and A. Yariv, "Low-threshold two-dimensional annular Bragg lasers," Opt. Lett. 29, 2641-2643 (2004). [CrossRef] [PubMed]
  23. A. Tandaechanurat, S. Ishida, K. Aoki, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, "Demonstration of high-Q (> 8600) three-dimensional photonic crystal nanocavity embedding quantum dots," Appl. Phys. Lett. 94, 171115 (2009). [CrossRef]
  24. I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, "Polymer multilayer particles: A route to spherical dielectric resonators," Macromolecules 39, 1449-1454 (2006). [CrossRef]
  25. J. Bezić, and S. Žumer, "Structures of the cholesteric liquid crystal droplets with parallel surface anchoring," Liq. Cryst. 11, 593-619 (1992). [CrossRef]
  26. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).
  27. Y. Bouligand, and F. Livolant, "The organization of cholesteric spherulites," J. Phys. (Paris) 45, 1899-1923 (1984). [CrossRef]
  28. D. K. Yang, and P. P. Crooker, "Field-induced textures of polymer-dispersed chiral liquid crystal microdroplets," Liq. Cryst. 9, 245-251 (1991). [CrossRef]
  29. H.-S. Kitzerow, and P. P. Crooker, "Behaviour of polymer dispersed cholesteric droplets with negative dielectric anisotropy in electric fields," Liq. Cryst. 11, 561-568 (1982). [CrossRef]
  30. M. V. Kurik, and O. D. Lavrentovich, "Negative-positive monopole transitions in cholesteric liquid crystals," Pis'ma Zh. Eksp. Teor. Fiz. 35, 445-447 (1992). [PubMed]
  31. M. F. Moreira, I. C. S. Carvalho, W. Cao, C. Bailey, B. Taheri, and P. Palffy-Muhoray, "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett. 85, 2691-2693 (2004). [CrossRef]
  32. K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, "Position-sensitive cholesteric liquid crystal dye laser covering a full visible range," Jpn. J. Appl. Phys. 46, 874-876 (2007). [CrossRef]
  33. A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Ultraviolet lasing in cholesteric liquid crystals," Opt. Lett. 26, 804-806 (2001). [CrossRef]
  34. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Phototunable photonic bandgap in a chiral liquid crystal laser device," Appl. Phys. Lett. 84, 2491-2493 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (1254 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited