OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27028–27035

Two-color multi-section quantum dot distributed feedback laser

Nader A. Naderi, Frédéric Grillot, Kai Yang, Jeremy B. Wright, Aaron Gin, and Luke F. Lester  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27028-27035 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A dual-wavelength emission source is realized by asymmetrically pumping a two-section quantum-dot distributed feedback laser. It is found that under asymmetric bias conditions, the powers between the ground-state and excited-state modes of the two-section device can be equalized, which is mainly attributed to the unique carrier dynamics of the quantum-dot gain medium. As a result, a two-color emission with an 8-THz frequency difference is realized that has potential as a compact THz source. It is also shown that the combination of significant inhomogeneous broadening and excited-state coupled mode operation allows the manipulation of the quantum-dot states through external optical stabilization.

© 2010 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers
(060.5625) Fiber optics and optical communications : Radio frequency photonics
(300.6495) Spectroscopy : Spectroscopy, teraherz
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 6, 2010
Revised Manuscript: November 26, 2010
Manuscript Accepted: December 2, 2010
Published: December 8, 2010

Nader A. Naderi, Frédéric Grillot, Kai Yang, Jeremy B. Wright, Aaron Gin, and Luke F. Lester, "Two-color multi-section quantum dot distributed feedback laser," Opt. Express 18, 27028-27035 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Koch, “Terahertz Communications: A 2020 Vision,” in Terahertz Frequency Detection and Identification of Materials and Objects, R. E. Miles, X. –C. Zhang, H. Eisele, A. Krotkus, eds. (Springer, New York, 2007).
  2. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004). [CrossRef]
  3. P. F. Taday, “Applications of terahertz spectroscopy to pharmaceutical sciences,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1815), 351–363, discussion 363–364 (2004). [CrossRef] [PubMed]
  4. S. Wang, B. Ferguson, D. Abbott, and X.-C. Zhang, “T-ray imaging and tomography,” J. Biol. Phys. 29(2/3), 247–256 (2003). [CrossRef]
  5. C. Baker, T. Lo, W. R. Tribe, B. E. Cole, M. R. Hogbin, and M. C. Kemp, “Detection of concealed explosives at a distance using terahertz technology,” in Proceedings of IEEE on T-Ray Imaging, Sensing, and Retection, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1559–1565.
  6. D. Saeedkia and S. Safavi-Naeini, “Terahertz photonics: optoelectronic techniques for generation and detection of terahertz waves,” J. Lightwave Technol. 26(15), 2409–2423 (2008). [CrossRef]
  7. A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation,” IEEE J. Sel. Top. Quantum Electron. 14(2), 289–294 (2008). [CrossRef]
  8. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), S151–S163 (2005). [CrossRef]
  9. M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two-colour laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005). [CrossRef]
  10. L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultra-fast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993). [CrossRef]
  11. E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. Syst. 13(2), 497–545 (2003). [CrossRef]
  12. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69(24), 3632–3634 (1996). [CrossRef]
  13. J. C. Pearson, K. A. McIntosh, and S. Verghese, Long-Wavelength Infrared Semiconductor Lasers (John Wiley & Sons, 2005), Chap. 7.
  14. C.-L. Wang and C.-L. Pan, “Tunable multiterahertz beat signal generation from a two-wavelength laser-diode array,” Opt. Lett. 20(11), 1292–1294 (1995). [CrossRef] [PubMed]
  15. P. Pellandini, R. P. Stanley, R. Houdrè, U. Oesterle, M. Ilegems, and C. Weisbuch, “Dual-wavelength laser emission from a coupled semiconductor microcavity,” Appl. Phys. Lett. 71(7), 864–866 (1997). [CrossRef]
  16. S. Hoffmann, M. Hofmann, E. Bründermann, M. Havenith, M. Matus, J. V. Moloney, A. S. Moskalenko, M. Kira, S. W. Koch, S. Saito, and K. Sakai, “Fourwave mixing and direct terahertz emission with two-color semiconductor lasers,” Appl. Phys. Lett. 84(18), 3585–3587 (2004). [CrossRef]
  17. S. Zolotovskaya, V. I. Smirnov, G. B. Venus, L. B. Glebov, and E. U. Rafailov, “Two-color output from InGaAs laser with multiplexed reflective Bragg mirror,” IEEE Photon. Technol. Lett. 21(15), 1093–1095 (2009). [CrossRef]
  18. M. Hyodo, M. Tani, S. Matsuura, N. Onodera, and K. Sakai, “Generation of millimeter-wave radiation using a dual-longitudinal-mode microchip laser,” Electron. Lett. 32(17), 1589–1591 (1996). [CrossRef]
  19. P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As–Al(Ga)As self-organized quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 6(3), 426–438 (2000). [CrossRef]
  20. A. Stintz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure,” IEEE Photon. Technol. Lett. 12(6), 591–593 (2000). [CrossRef]
  21. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999). [CrossRef]
  22. C. Y. Jin, H. Y. Liu, T. J. Badcock, K. M. Groom, M. Gutiérrez, R. Royce, M. Hopkinson, and D. J. Mowbray, “High-performance 1.3 [micro sign]m InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature,” IEE Proc., Optoelectron. 153(6), 280–283 (2006). [CrossRef]
  23. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003). [CrossRef]
  24. M. A. Cataluna, D. I. Nikitichev, S. Mikroulis, H. Simos, C. Simos, C. Mesaritakis, D. Syvridis, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation,” Opt. Express 18(12), 12832–12838 (2010). [CrossRef] [PubMed]
  25. M. Kamp, J. Hofmann, F. Schafer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling -a material independent way to complex coupled DFB lasers,” Opt. Mater. 17(1-2), 19–25 (2001). [CrossRef]
  26. H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D Appl. Phys. 38(13), 2112–2118 (2005). [CrossRef]
  27. T. Nakura and Y. Nakano, “LAPAREX-An automatic parameter extraction program for gain- and index-coupled distributed feedback semiconductor lasers, and its application to observation of changing coupling coefficients with currents,” IEICE Trans. Electron. 83(3), 488–495 (2000).
  28. P. Bhattacharya, “Lasers: structures and properties” in Semiconductor Optoelectronic Devices, E. Svendsen, R. Kernan, P. Daly, eds. (Prentice Hall, Upper saddle river, NJ, 1994).
  29. F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55-μm InAs/InP (113)B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009). [CrossRef]
  30. C. Mesaritakis, C. Simos, H. Simos, S. Mikroulis, I. Krestnikov, E. Roditi, and D. Syvridis, “Effect of optical feedback to the ground and excited state emission of a passively mode locked quantum dot laser,” Appl. Phys. Lett. 97(6), 061114 (2010). [CrossRef]
  31. F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, and L. F. Lester, “Variation of the feedback sensitivity in a 1.55μm InAs/InP quantum-dash Fabry-Perot semiconductor laser,” Appl. Phys. Lett. 93(19), 191108 (2008). [CrossRef]
  32. F. Grillot, N. A. Naderi, M. Pochet, C.-Y. Lin, P. Besnard, and L. F. Lester, “Tuning of the critical feedback level in 1.55-μm quantum dash semiconductor laser diodes,” IET Optoelectron. 3(6), 242–247 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited