OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27048–27059

Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers

Benedict Lau, Mohamed A. Swillam, and Amr S. Helmy  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27048-27059 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, novel ultra compact and ultra wide band couplers between silicon and plasmonic slot waveguides are analyzed, characterized, and fabricated. This novel coupling scheme is fabricated using silicon on insulator platform. An orthogonal junction configuration is designed to provide non-resonate wideband coupling from a 400 nm silicon waveguide to 50-nm wide air-filled plasmonic slot. The 1 μm wide full-width half-max coupling spectrum can theoretically reach high peak of 70% coupling to the plasmonic slot centered around the 1550 nm wavelength. This center wavelength can be controlled by varying the silicon waveguide width. Theoretical analysis is in good agreement with FDTD simulated results, and experimental results. The fabrication procedure is also presented and discussed.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

Original Manuscript: October 11, 2010
Revised Manuscript: November 22, 2010
Manuscript Accepted: November 26, 2010
Published: December 8, 2010

Benedict Lau, Mohamed A. Swillam, and Amr S. Helmy, "Hybrid orthogonal junctions: wideband plasmonic slot-silicon waveguide couplers," Opt. Express 18, 27048-27059 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  2. M. A. Swillam and A. S. Helmy, “Analysis and applications of 3D rectangular metallic waveguides,” Opt. Express 18(19), 19831–19843 (2010). [CrossRef] [PubMed]
  3. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  4. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006). [CrossRef] [PubMed]
  5. P. Berini, “Bulk and surface sensitivity of surface plasmon waveguide,” N. J. Phys. 10(10), 105010 (2008). [CrossRef]
  6. H. J. Caulfield and S. Dolev, “Why future supercomputing requires optics,” Nat. Photonics 4(5), 261–263 (2010). [CrossRef]
  7. B. G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J. I. Dadap, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, R. M. Osgood, and K. Bergman, “Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks,” IEEE Photon. Technol. Lett. 20(6), 398–400 (2008). [CrossRef]
  8. E. Feigenbaum and M. Orenstein, “Modeling of Complementary (Void) Plasmon Waveguiding,” J. Lightwave Technol. 25(9), 2547–2562 (2007). [CrossRef]
  9. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  10. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett. 35(4), 502–504 (2010). [CrossRef] [PubMed]
  11. Z. Han, A. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96(13), 131106 (2010). [CrossRef]
  12. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slotwaveguides,” J. Lightwave Technol. 25(9), 2511–2521 (2007). [CrossRef]
  13. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]
  14. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007). [CrossRef]
  15. G. B. Hoffman and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express 16(17), 12677–12687 (2008). [CrossRef] [PubMed]
  16. G. Veronis and S. H. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15(3), 1211–1221 (2007). [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
  18. F. D. T. D. Luemrical, Lumerical Solutions, Inc. http://www.lumerical.com
  19. E. D. Palik, Handbook of optical constants of solids,(Academic press,1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited