OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27067–27078

Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments

Robbert Bloem, Sean Garrett-Roe, Halina Strzalka, Peter Hamm, and Paul Donaldson  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27067-27078 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate how quasi-phase-cycling achieved by sub-cycle delay modulation can be used to replace optical chopping in a box-CARS 2D IR experiment in order to enhance the signal size, and, at the same time, completely eliminate any scattering contamination. Two optical devices are described that can be used for this purpose, a wobbling Brewster window and a photoelastic modulator. They are simple to construct, easy to incorporate into any existing 2D IR setup, and have attractive features such as a high optical throughput and a fast modulation frequency needed to phase cycle on a shot-to-shot basis.

© 2010 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 20, 2010
Revised Manuscript: November 11, 2010
Manuscript Accepted: November 16, 2010
Published: December 8, 2010

Robbert Bloem, Sean Garrett-Roe, Halina Strzalka, Peter Hamm, and Paul Donaldson, "Enhancing signal detection and completely eliminating scattering using quasi-phase-cycling in 2D IR experiments," Opt. Express 18, 27067-27078 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Mukamel and R. M. Hochstrasser, “2D spectroscopy,” Chem. Phys. 266, 135–136 and all articles in that issue (2001). [CrossRef]
  2. R. M. Hochstrasser, “Multidimensional ultrafast spectroscopy,” Proc. Natl. Acad. Sci. USA 104, 14189 and all articles in that issue (2007). [CrossRef] [PubMed]
  3. S. Mukamel, Y. Tanimura, and P. Hamm, “Coherent multidimensional optical spectroscopy,” Acc. Chem. Research 42, 1207–1209 and all articles in that issue (2009). [CrossRef]
  4. S. Mukamel, “Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations,” Annu. Rev. Phys. Chem. 51, 691–729 (2000). [CrossRef] [PubMed]
  5. P. Hamm, and R. M. Hochstrasser, “Structure and dynamics of proteins and peptides: Femtosecond twodimensional infrared spectroscopy,” in Ultrafast Infrared and Raman Spectroscopy, M. D. Fayer, ed. (Marcel Dekker, New York, 2001), pp. 273–347.
  6. M. T. Zanni, and R. M. Hochstrasser, “Two-dimensional infrared spectroscopy: a promising new method for the time resolution of structures,” Curr. Opin. Struct. Biol. 11, 516–522 (2001). [CrossRef]
  7. N. H. Ge, and R. M. Hochstrasser, “Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY,” PhysChemComm 5, 17–26 (2002).
  8. S. Woutersen, and P. Hamm, “Nonlinear 2D vibrational spectroscopy of peptides,” J. Phys. Condens. Matter 14, R1035–R1062 (2002). [CrossRef]
  9. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003). [CrossRef]
  10. M. Cho, “Coherent two-dimensional optical spectroscopy,” Bull. Korean Chem. Soc. 27, 1940–1960 (2006). [CrossRef]
  11. J. Zheng, K. Kwak, and M. D. Fayer, “Ultrafast 2D IR vibrational echo spectroscopy,” Acc. Chem. Res. 40, 75–83 (2007). [CrossRef]
  12. J. Bredenbeck, J. Helbing, C. Kolano, and P. Hamm, “Ultrafast 2D-IR spectroscopy of transient species,” ChemPhysChem 8, 1747–1756 (2007). [CrossRef] [PubMed]
  13. I. J. Finkelstein, J. Zheng, H. Ishikawa, S. Kim, K. Kwak, and M. D. Fayer, “Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy,” Phys. Chem. Chem. Phys. 9, 1533–1549 (2007). [CrossRef] [PubMed]
  14. P. Hamm, J. Helbing, and J. Bredenbeck, “Two-dimensional infrared spectroscopy of photoswitchable peptides,” Annu. Rev. Phys. Chem. 59, 291–317 (2008). [CrossRef]
  15. Z. Ganim, H. S. Chung, A. W. Smith, L. P. DeFlores, K. C. Jones, and A. Tokmakoff, “Amide I two-dimensional infrared spectroscopy of proteins,” Acc. Chem. Res. 41, 432–441 (2008). [CrossRef] [PubMed]
  16. Y. S. Kim, and R. M. Hochstrasser, “Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics,” J. Phys. Chem. B 113, 8231–8251 (2009). [CrossRef] [PubMed]
  17. M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, Boca Raton, 2009). [CrossRef]
  18. S. H. Shim, and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009). [CrossRef] [PubMed]
  19. P. Hamm, and M. T. Zanni, Concepts and Methods of 2D Infrared Spectrsocopy (Cambridge University Press, Cambridge, 2011).
  20. E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Z¨uttel, and P. Hamm, “Vibrational dynamics of LiBH4 by infrared pump-probe and 2D spectroscopy,” J. Phys. Chem. A 113, 12838–12846 (2009). [CrossRef] [PubMed]
  21. S. H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007). [CrossRef] [PubMed]
  22. D. Keusters, H. Tan, and W. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103, 10369–10380 (1999). [CrossRef]
  23. W. DeBoeij, M. Pshenichnikov, and D. Wiersma, “Phase-locked heterodyne-detected stimulated photon echo. A unique tool to study solute-solvent interactions,” Chem. Phys. Lett. 238, 1–8 (1995). [CrossRef]
  24. A. Albrecht, J. Hybl, S. Faeder, and D. M. Jonas, “Experimental distinction between phase shifts and time delays: Implications for femtosecond spectroscopy and coherent control of chemical reactions,” J. Chem. Phys. 111, 10934–10956 (1999). [CrossRef]
  25. P. Tian, D. Keusters, Y. Suzaki, and W. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003). [CrossRef] [PubMed]
  26. P. Tekavec, G. Lott, and A. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007). [CrossRef] [PubMed]
  27. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, “Facile collection of twodimensional electronic spectra using femtosecond pulse-shaping technology,” Opt. Express 15, 16681 (2007). [CrossRef] [PubMed]
  28. J. A. Myers, K. L. M. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16, 17420–17428 (2008). [CrossRef] [PubMed]
  29. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional fourier-transform spectroscopy,” Rev. Sci. Instrum. 80, 073108 (2009). [CrossRef] [PubMed]
  30. W. Warren, and A. Zewail, “Multiple phase-coherent laser pulses in optical spectroscopy. I. The technique and experimental applications,” J. Chem. Phys. 78, 2279 (1983). [CrossRef]
  31. J. Helbing, and P. Hamm, “A compact implementation of Fourier transform 2D-IR spectroscopy without phase ambiguity,” J. Opt. Soc. Am. B. submitted.
  32. M. Bonmarin, and J. Helbing, “Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements,” Chirality 21, E298–E306 (2009). [CrossRef] [PubMed]
  33. F. Dostal, “Resonant torsional oscillators - patent 3609485,” United States Patent (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited