OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27112–27117

Room temperature continuous wave milliwatt terahertz source

Maik Scheller, Joe M. Yarborough, Jerome V. Moloney, Mahmoud Fallahi, Martin Koch, and Stephan W. Koch  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27112-27117 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a continuous wave terahertz source based on intracavity difference frequency generation within a dual color vertical external cavity surface emitting laser. Using a nonlinear crystal with a surface emitting phase matching scheme allows for high conversion efficiencies. Due to the tunability of the dual mode spacing, the entire spectral range of the terahertz gap can be covered. The terahertz output scales quadratically with the intracavity intensity, potentially allowing for terahertz intensities in the range of 10s of milliwatts and beyond.

© 2010 OSA

OCIS Codes
(300.6495) Spectroscopy : Spectroscopy, teraherz
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:

Original Manuscript: November 15, 2010
Revised Manuscript: December 2, 2010
Manuscript Accepted: December 3, 2010
Published: December 8, 2010

Virtual Issues
January 14, 2011 Spotlight on Optics

Maik Scheller, Joe M. Yarborough, Jerome V. Moloney, Mahmoud Fallahi, Martin Koch, and Stephan W. Koch, "Room temperature continuous wave milliwatt terahertz source," Opt. Express 18, 27112-27117 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990). [CrossRef]
  2. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007). [CrossRef]
  3. T. Yasui, T. Yasuda, K. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005). [CrossRef] [PubMed]
  4. C. D. Stoik, M. J. Bohn, and J. L. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16(21), 17039–17051 (2008). [CrossRef] [PubMed]
  5. C. Jördens and M. Koch, “Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy,” Opt. Eng. 47(3), 037003 (2008). [CrossRef]
  6. A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging,” J. Pharm. Sci. 94(1), 177–183 (2005). [CrossRef] [PubMed]
  7. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004). [CrossRef]
  8. P. H. Siegel, “THz Instruments for Space,” IEEE Trans. Antenn. Propag. 55(11), 2957–2965 (2007). [CrossRef]
  9. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007). [CrossRef]
  10. C. Walther, M. Fischer, G. Scalari, R. Terazzi, N. Hoyler, and J. Faist, “Quantum cascade lasers operating from 1.2 to 1.6 THz,” Appl. Phys. Lett. 91(13), 131122 (2007). [CrossRef]
  11. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009). [CrossRef]
  12. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave Uni-Traveling Carrier photodiodes for continuous wave THz generation,” Opt. Express 18(11), 11105–11110 (2010). [CrossRef] [PubMed]
  13. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, and K. Kawase, “Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser,” Appl. Opt. 48(15), 2899–2902 (2009). [CrossRef] [PubMed]
  14. W. C. Hurlbut, V. G. Kozlov, and K. L. Vodopyanov, “Difference frequency generation of THz waves inside a high-finesse ring-cavity OPO pumped by a fiber laser,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010.
  15. R. Sowade, I. Breunig, I. Cámara Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, “Continuous-wave optical parametric terahertz source,” Opt. Express 17(25), 22303–22310 (2009). [CrossRef]
  16. L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, J. V. Moloney, W. Stolz, S. W. Koch, R. Bedford, and J. T. Murray, “Linearly polarized dual-wavelength vertical-external-cavity surface-emitting laser,” Appl. Phys. Lett. 90(18), 181124 (2007). [CrossRef]
  17. J. V. Moloney, J. Hader, and S. W. Koch, “Quantum design of semiconductor active materials: laser and amplifier applications,” Laser Photon. Rev. 1(1), 24–43 (2007). [CrossRef]
  18. J. A. L'huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate. Pt.1: Theory,” Appl. Phys. B 86(2), 185–196 (2007). [CrossRef]
  19. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited