OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27167–27172

Femtotesla atomic magnetometry in a microfabricated vapor cell

W. Clark Griffith, Svenja Knappe, and John Kitching  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27167-27172 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an optically pumped 87Rb magnetometer with 5 fT/Hz1/2 sensitivity when operated in the spin-exchange relaxation free (SERF) regime. The magnetometer uses a microfabricated vapor cell consisting of a cavity etched in a 1 mm thick silicon wafer with anodically bonded Pyrex windows. The measurement volume of the magnetometer is 1 mm3, defined by the overlap region of a circularly polarized pump laser and a linearly polarized probe laser, both operated near 795 nm. Sensitivity limitations unique to the use of microfabricated cells are discussed.

© 2010 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(130.6010) Integrated optics : Sensors

ToC Category:
Atomic and Molecular Physics

Original Manuscript: October 12, 2010
Revised Manuscript: November 23, 2010
Manuscript Accepted: November 23, 2010
Published: December 9, 2010

W. Clark Griffith, Svenja Knappe, and John Kitching, "Femtotesla atomic magnetometry in a microfabricated vapor cell," Opt. Express 18, 27167-27172 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007). [CrossRef]
  2. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003). [CrossRef] [PubMed]
  3. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97(15), 151110 (2010). [CrossRef]
  4. D. Drung, S. Bechstein, K. P. Franke, M. Scheiner, and T. Schurig, “Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning,” IEEE Trans. Appl. Supercond. 11(1), 880–883 (2001). [CrossRef]
  5. W. Happer and H. Tang, “Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors,” Phys. Rev. Lett. 31(5), 273–276 (1973). [CrossRef]
  6. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89(13), 130801 (2002). [CrossRef] [PubMed]
  7. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85(9), 1460–1462 (2004). [CrossRef]
  8. M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. U.S.A. 105(7), 2286–2290 (2008). [CrossRef] [PubMed]
  9. K. Sternickel and A. I. Braginski, “Biomagnetism using SQUIDs: status and perspectives,” Supercond. Sci. Technol. 19(3), S160–S171 (2006). [CrossRef]
  10. S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97(13), 133703 (2010). [CrossRef]
  11. V. Shah, S. Knappe, P. D. D. Schwindt, and J. Kitching, “Subpicotesla atomic magnetometry with a microfabricated vapour cell,” Nat. Photonics 1(11), 649–652 (2007). [CrossRef]
  12. J. Dupont-Roc, S. Haroche, and C. Cohen-Tannoudji, “Detection of very weak magnetic fields (10-9 gauss) by 87Rb zero-field level crossing resonances,” Phys. Lett. A 28(9), 638–639 (1969). [CrossRef]
  13. W. C. Griffith, R. Jimenez-Martinez, V. Shah, S. Knappe, and J. Kitching, “Miniature atomic magnetometer integrated with flux concentrators,” Appl. Phys. Lett. 94(2), 023502 (2009). [CrossRef]
  14. S. K. Lee and M. V. Romalis, “Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry,” J. Appl. Phys. 103(8), 084904 (2008). [CrossRef]
  15. D. Robbes, “Highly sensitive magnetometers: a review,” Sens. Actuators A Phys. 129(1-2), 86–93 (2006). [CrossRef]
  16. G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. 40(10), 3946–3949 (1969). [CrossRef]
  17. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, “Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability,” Opt. Lett. 30(18), 2351–2353 (2005). [CrossRef] [PubMed]
  18. T. W. Kornack, S. J. Smullin, S. K. Lee, and M. V. Romalis, “A low-noise ferrite magnetic shield,” Appl. Phys. Lett. 90(22), 223501 (2007). [CrossRef]
  19. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, D. Budker, and M. V. Romalis, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77(3), 033408 (2008). [CrossRef]
  20. J. Preusser, V. Gerginov, S. Knappe, and J. Kitching, “A photonic atomic magnetometer,” in preparation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited