OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27181–27190

Low power consumption integrated acousto-optic filter in domain inverted LiNbO3 superlattice

D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27181-27190 (2010)
http://dx.doi.org/10.1364/OE.18.027181


View Full Text Article

Enhanced HTML    Acrobat PDF (1358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on an integrated acousto-optic filter in domain inverted LiNbO3 using a coplanar electrode configuration, which can achieve complete optical switching at electrical powers as low as 50mW. These values are more than one order of magnitude lower than previously reported results [Opt. Lett. 34, 3205 (2009)]. In order to design the low power consumption devices, we have calculated surface acoustic wave excitation, propagation and acousto-optic interaction in the domain inverted LiNbO3 superlattice using scalar approximation and FEM analysis. Results from both modeling techniques are in good agreement with the experiments, including direct measurement of the acoustic displacement using laser interferometry and acousto-optic performance.

© 2010 OSA

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.1040) Optical devices : Acousto-optical devices
(130.2260) Integrated optics : Ferroelectrics

ToC Category:
Integrated Optics

History
Original Manuscript: October 20, 2010
Revised Manuscript: November 26, 2010
Manuscript Accepted: November 28, 2010
Published: December 9, 2010

Citation
D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, "Low power consumption integrated acousto-optic filter in domain inverted LiNbO3 superlattice," Opt. Express 18, 27181-27190 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27181


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. K. Smith, A. M. J. Koonen, H. Herrmann, and W. Sohler, Wavelength-selective device, Fiber Optic Communication (Springer-Verlag, Berlin, 2001), pp. 262–312.
  2. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007). [CrossRef]
  3. T. Xie, Z. Wang, and Y. Pan, “Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation,” Appl. Opt. 44(20), 4272–4280 (2005). [CrossRef] [PubMed]
  4. N. Gupta, and R. Dahmani, “Acousto-optic sensing and imaging for biomedical applications,” in Engineering in Medicine and Biology Society,1997. Proceedings of the 19th Annual International Conference of the IEEE, 1997), 702–703 vol.702.
  5. K. Yamanouchi, K. Higuchi, and K. Shibayama, “TE-TM mode conversion by interaction between elastic surface waves and laser beam on metal-diffused optical waveguide,” Appl. Phys. Lett. 28(2), 75 (1976). [CrossRef]
  6. D. A. Smith, R. S. Chakravarthy, Z. Bao, J. E. Baran, J. L. Jackel, A. d'Alessandro, D. J. Fritz, S. H. Huang, X. Y. Zou, S. M. Hwang, A. E. Willner, and K. D. Li, “Evolution of the acousto-optic wavelength routing switch,” J. Lightwave Technol. 14(6), 1005–1019 (1996). [CrossRef]
  7. L. N. Binh and J. Livingstone, “A wide-band acoustooptic TE-TM mode converter using a doubly confined structure,” IEEE J. Quantum Electron. 16(9), 964–971 (1980). [CrossRef]
  8. H. Herrmann, P. Muller-Reich, V. Reimann, R. Ricken, H. Seibert, and W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double-stage wavelength filters in LiNbO3,” Electron. Lett. 28(7), 642–644 (1992). [CrossRef]
  9. O. A. Peverini, H. Herrmann, and R. Orta, “Film-loaded SAW waveguides for integrated acousto-optical polarization converters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(10), 1298–1307 (2004). [CrossRef] [PubMed]
  10. T. Nakazawa, S. Taniguchi, and M. Seino, “Ti:LiNbO3 Acousto-Optic Tunable Filter (AOTF),” Fujitsu Sci. Tech. J. 35, 107–112 (1999).
  11. D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett. 95(5), 052901 (2009). [CrossRef]
  12. D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Integrated acousto-optic polarization converter in a ZX-cut LiNbO(3) waveguide superlattice,” Opt. Lett. 34(20), 3205–3207 (2009). [CrossRef] [PubMed]
  13. D. Morgan, Surface Acoustic Wave Filters With Application to Electronic Communications and Signal Processing, 2 ed. (Elsevier, Oxford, UK, 2007).
  14. H. Hayashi and Y. Fujii, “An efficient acousto-optic TE/M mode converter utilizing a doubly confined optical and acoustic waveguide structure,” J. Appl. Phys. 49(8), 4534–4539 (1978). [CrossRef]
  15. G. Kovacs, M. Anhorn, H. E. Engan, G. Visintini, and C. C. W. Ruppel, “Improved material constants for LiNbO3 and LiTaO3,” in Ultrasonics Symposium,1990. Proceedings., IEEE 1990, 1990), 435–438 vol.431.
  16. H. Gnewuch, N. K. Zayer, C. N. Pannell, G. W. Ross, and P. G. R. Smith, “Broadband monolithic acousto-optic tunable filter,” Opt. Lett. 25(5), 305–307 (2000). [CrossRef]
  17. P. Vairac and B. Cretin, “Electromechanical resonator in scanning microdeformation microscopy: theory and experiment,” Opt. Commun. 132, 19 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited