OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27238–27250

Temperature dependent characterization of terahertz vibrations of explosives and related threat materials

Joseph S. Melinger, S. Sree Harsha, N. Laman, and D. Grischkowsky  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27238-27250 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1350 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Waveguide terahertz time-domain spectroscopy (THz-TDS) is used to characterize the temperature dependent vibrational properties of three threat-related materials: 4-amino-dinitrotoluene (4A-DNT), pentaerythritol tetranitrate (PETN), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). These materials are characterized as thin polycrystalline layers deposited in the 50 micron gap of a metal parallel plate waveguide. For each material waveguide THz-TDS at least partially resolves the underlying vibrational spectrum and reveals new features that have not been observed in previous free space measurements of these materials. Strong experimental evidence for a phase transformation is observed for 4A-DNT as the polycrystalline layer on the waveguide surface is cooled to near 200 K. For PETN a highly resolved spectrum containing eleven vibrational lines is observed at 11 K with full-width at half maximum linewidths ranging from 7 GHz to 40 GHz. Based on comparison to measurements in the literature, our PETN measurement suggests that it is possible to produce narrow linewidths from a polycrystalline layer that approach those from a single crystal. Finally, for HMX, a highly resolved vibrational spectrum is measured that is assigned to the metastable gamma polymorph.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: September 22, 2010
Revised Manuscript: October 28, 2010
Manuscript Accepted: November 2, 2010
Published: December 10, 2010

Joseph S. Melinger, S. Sree Harsha, N. Laman, and D. Grischkowsky, "Temperature dependent characterization of terahertz vibrations of explosives and related threat materials," Opt. Express 18, 27238-27250 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE-Int. Soc. Opt. Eng., 5070, 44–52 (2003).
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications: Explosives, weapons, and drugs,” Semicond. Sci. Technol. 20(7), S266–S2802005). [CrossRef]
  3. W. H. Fan, A. Burnett, P. C. Upadhya, J. Cunningham, E. H. Linfield, and A. G. Davies, “Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy,” Appl. Spectrosc. 61(6), 638–643 (2007). [CrossRef] [PubMed]
  4. J. Barber, D. E. Hooks, D. J. Funk, R. D. Averitt, A. J. Taylor, and D. Babikov, “Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy,” J. Phys. Chem. A 109(15), 3501–3505 (2005). [CrossRef]
  5. N. Laman, S. Sree Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16(6), 4094–4105 (2008). [CrossRef] [PubMed]
  6. J. S. Melinger, N. Laman, and D. Grischkowsky, “The underlying terahertz spectrum of explosive solids,” Appl. Phys. Lett. 93, 011102 (2008). [CrossRef]
  7. T. Lo, I. S. Gregory, C. Baker, P. F. Taday, W. R. Tribe, and M. C. Kemp, “The very far-infrared spectra of energetic materials and possible confusion materials using terahertz pulsed spectroscopy,” Vib. Spectrosc. 42(2), 243–248 (2006). [CrossRef]
  8. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz,” Opt. Express 15(19), 12060–12067 (2007). [CrossRef] [PubMed]
  9. Y. Hu, P. Huang, L. Guo, X. Wang, and C. Zhang, “Terahertz spectroscopic investigations of explosives,” Phys. Lett. A 359(6), 728–732 (2006). [CrossRef]
  10. M. R. Leahy-Hoppa, M. J. Fitch, X. Zheng, L. M. Hayden, and R. Osiander, “Wideband terahertz spectroscopy of explosives,” Chem. Phys. Lett. 434(4-6), 227–230 (2007). [CrossRef]
  11. J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478(4-6), 172–174 (2009). [CrossRef]
  12. D. Allis, J. A. Zeitler, P. F. Taday, and T. A. Korter, “Theoretical analysis of the solid-state terahertz spectrum the high explosive RDX,” Chem. Phys. Lett. 463(1-3), 84–89 (2008). [CrossRef]
  13. D. G. Allis and T. M. Korter, “Theoretical analysis of the terahertz spectrum of the high explosive PETN,” ChemPhysChem 7(11), 2398–2408 (2006). [CrossRef] [PubMed]
  14. J. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29(14), 1617–1619 (2004). [CrossRef] [PubMed]
  15. J. S. Melinger, N. Laman, and D. Grischkowsky, “The underlying terahertz vibrational spectrum of explosive solids’,” Appl. Phys. Lett. 93, 011102 (2008). [CrossRef]
  16. M. van Exter and D. Grischkowsky, “Characterization of an optoelectronic terahertz beam system,” IEEE Trans. Microw. Theory Tech. 38(11), 1684–1691 (1990). [CrossRef]
  17. J. S. Melinger, N. Laman, S. S. Harsha, S. F. Cheng, and D. Grischkowsky, “High-resolution waveguide terahertz spectroscopy of partially oriented organic polycrystalline films,” J. Phys. Chem. A 111(43), 10977–10987 (2007). [CrossRef] [PubMed]
  18. J. S. Melinger, S S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids,” J. Opt. Soc. Am. B 26, A79–A89 (2009). [CrossRef]
  19. D. Graham, A. R. Kennedy, C. J. McHugh, W. E. Smith, W. I. F. David, K. Shankland, and N. Shankland, “The crystal structures of three primary products from the selective reduction of 2,4,6,-trinitrotoluene,” N. J. Chem. 28(1), 161–165 (2004). [CrossRef]
  20. F. Demartin, G. Filippini, A. Gavezzotti, and S. Rizzato, “X-ray diffraction and packing analysis on vintage crystals: Wilhelm Koerner’s nitrobenzene derivatives from the School of Agricultural Sciences in Milano,” Acta Crystallogr. B 60(Pt 5), 609–620 (2004). [CrossRef] [PubMed]
  21. H. Cady and A. C. Larson, “Pentaerythritol tetranitrate II: its crystal structure and transformation to PETN I; an algorithm for refinement of crystal structures with poor data,” Acta Crystallogr. B 31(7), 1864–1869 (1975). [CrossRef]
  22. C. T. Konek, B. P. Mason, J. P. Hooper, C. A. Stoltz, and J. Wilkinson, “Terahertz absorption spectra of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) polymorphs,” Chem. Phys. Lett. 489(1-3), 48–53 (2010). [CrossRef]
  23. P. Main, R. E. Cobbledick, and R. W. H. Small, “Structure of the fourth form of 1,3,5,7-tetra azacyclooctane (γ-GNX),2C4H8N8O8.0.5H2O,” Acta Crystallogr. C 41, 1351-1354 (1985). [CrossRef]
  24. H. Cady, A. C. Larson, and D. T. Cromer, “The crystal structure of α-HMX and a refinement of the structure of β-HMX,” Acta Crystallogr. 16(7), 617–623 (1963). [CrossRef]
  25. R. E. Cobbledick and R. W. H. Small, “The crystal structure of the δ-form of 1,35,7-tetranitro-1,3,5,7 tetraazocyclooctane (δ-HMX),” Acta Crystallogr. B 30(8), 1918–1922 (1974). [CrossRef]
  26. D. G. Allis, D. A. Prokhorova, and T. M. Korter, “Solid-state modeling of the terahertz spectrum of the high explosive HMX,” J. Phys. Chem. A 110(5), 1951–1959 (2006). [CrossRef] [PubMed]
  27. K.C. Oppenheim, T.M. Korter, J.S. Melinger, and D. Grischkowsky, “A solid-state density functional theory investigation of the structural isomers 1,2-dicyanobenzene and 1,3-dicyanobenzene” accepted for publication in J. Phys. Chem. A.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited