OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27270–27279

Absorbing polarization selective resonant gratings

Anni Lehmuskero, Ismo Vartiainen, Toni Saastamoinen, Tapani Alasaarela, and Markku Kuittinen  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27270-27279 (2010)
http://dx.doi.org/10.1364/OE.18.027270


View Full Text Article

Enhanced HTML    Acrobat PDF (1460 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce resonant absorbers that consist of linear metal wires embedded inside of a titanium dioxide grating. We show that in these structures the guided-mode resonance may lead to the almost total absorption of one polarization component and greatly enhance the absorption in localized surface plasma resonance. In addition, we show that the structures have potential to function as filters or polarizing beamsplitters. Absorption of 99.67 % has been obtained together with the contrast of 6600 at the wavelength of 532 nm. This corresponds the extinction of 8.8597. The results have been verified experimentally by fabricating an absorbing filter with electron beam lithography and atomic layer deposition technique. The absorption is remarkably high considering the thickness of the structures which is only 219–333 nm.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.5440) Optical devices : Polarization-selective devices
(260.5740) Physical optics : Resonance

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 7, 2010
Revised Manuscript: November 10, 2010
Manuscript Accepted: November 12, 2010
Published: December 10, 2010

Citation
Anni Lehmuskero, Ismo Vartiainen, Toni Saastamoinen, Tapani Alasaarela, and Markku Kuittinen, "Absorbing polarization selective resonant gratings," Opt. Express 18, 27270-27279 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27270


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hohenau, A. Leitner, and F. R. Aussenegg, "Near-field and far-field properties of nanoparticle arrays," in Surface Plasmon Nanophotonics (Springer, Dordrecht, 2007). [CrossRef]
  2. S. E. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, New York, 2007).
  3. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001). [CrossRef]
  4. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  5. S. S. Wang, and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993). [CrossRef] [PubMed]
  6. S. S. Wang, and R. Magnusson, "Multilayer waveguide-grating filters," Appl. Opt. 34, 2414-2420 (1995). [CrossRef] [PubMed]
  7. R. Magnusson, and M. Shokooh-Saremi, "Physical basis for wideband resonant reflectors," Opt. Express 16, 3456-3462 (2008). [CrossRef] [PubMed]
  8. X. Fu, K. Yi, J. Shao, and Z. Fan, "Nonpolarizing guided-mode resonance filter," Opt. Lett. 34, 124-125 (2009). [CrossRef] [PubMed]
  9. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab," Phys. Rev. Lett. 91, 83901 (2003). [CrossRef]
  10. S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction," Phys. Rev. Lett. 86, 4688-4691 (2001). [CrossRef] [PubMed]
  11. L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge university press, Cambridge, 2006).
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  13. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005). [CrossRef]
  14. H. Li, Q. Liu, S. Xie, X. Zhoua, H. Xia, and R. Zhouc, "Particle plasmons resonant characteristics in arrays of strongly coupled gold nanoparticles," Solid State Commun. 149, 239-242 (2009). [CrossRef]
  15. J. P. Kottmann, and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001). [CrossRef] [PubMed]
  16. J. Turunen, "Diffraction theory of microrelief gratings," in Micro-Optics, Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997).
  17. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, "30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography," Appl. Phys. Lett. 89, 141105 (2006). [CrossRef]
  18. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, "Atomic layer deposited titanium dioxide and its application in resonant waveguide grating," Appl. Opt. 49, 4321-4325 (2010). [CrossRef] [PubMed]
  19. J. P. Kottmann, and O. J. F. Martin, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001). [CrossRef]
  20. A. Lehmuskero, M. Kuittinen, and P. Vahimaa, "Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness," Opt. Express 15, 10744-10752 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited