OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27280–27290

Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration

A. Casas Bedoya, S. Mahmoodian, C. Monat, S. Tomljenovic-Hanic, C. Grillet, P. Domachuk, E.C. Mägi, B. J. Eggleton, and R. W. van der Heijden  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27280-27290 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A microfluidic double heterostructure cavity is created in a silicon planar photonic crystal waveguide by selective infiltration of a liquid crystal. The spectral evolution of the cavity resonances probed by evanescent coupling reveals that the liquid crystal evaporates, even at room temperature, despite its relatively low vapor pressure of 5 × 10−3 Pa. We explore the infiltration and evaporation dynamics of the liquid crystal within the cavity using a Fabry-Perot model that accounts for the joint effects of liquid volume reduction and cavity length variation due to liquid evaporation. While discussing how the pattern of the infiltrated liquid can be optimized to restrict evaporation, we find that the experimental behavior is consistent with basic microfluidic relations considering the small volumes of liquids and large surface areas present in our structure.

© 2010 OSA

OCIS Codes
(230.3720) Optical devices : Liquid-crystal devices
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: October 7, 2010
Revised Manuscript: November 7, 2010
Manuscript Accepted: December 6, 2010
Published: December 10, 2010

A. Casas Bedoya, S. Mahmoodian, C. Monat, S. Tomljenovic-Hanic, C. Grillet, P. Domachuk, E.C. Mägi, B. J. Eggleton, and R. W. van der Heijden, "Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration," Opt. Express 18, 27280-27290 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  2. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  3. C. L. C. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. C. Wu, L. O’Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, “Reconfigurable microfluidic photonic crystal slab cavities,” Opt. Express 16(20), 15887–15896 (2008). [CrossRef] [PubMed]
  4. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17(3), 1628–1635 (2009). [CrossRef] [PubMed]
  5. H. Kurt and D. S. Citrin, “Reconfigurable multimode photonic-crystal waveguides,” Opt. Express 16(16), 11995–12001 (2008). [CrossRef] [PubMed]
  6. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006). [CrossRef] [PubMed]
  7. F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006). [CrossRef]
  8. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini, and L. Zuppiroli, “Local infiltration of planar photonic crystals with UV-curable polymers,” J. Opt. Soc. Am. B 25(10), 1562 (2008). [CrossRef]
  9. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006). [CrossRef] [PubMed]
  10. S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16(9), 6515–6527 (2008). [CrossRef] [PubMed]
  11. H. H. J. E. Kicken, P. F. A. Alkemade, R. W. van der Heijden, F. Karouta, R. Nötzel, E. van der Drift, and H. W. M. Salemink, “Wavelength tuning of planar photonic crystals by local processing of individual holes,” Opt. Express 17(24), 22005–22011 (2009). [CrossRef] [PubMed]
  12. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007). [CrossRef]
  13. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O’Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, “High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures,” Opt. Lett. 33(19), 2206–2208 (2008). [CrossRef] [PubMed]
  14. C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic-Hanic, R. McPhedran, B. J. Eggleton, L. O'Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, “Temperature stabilization of optofluidic photonic crystal cavities,” Appl. Phys. Lett. 94(23), 231114 (2009). [CrossRef]
  15. K. Busch and S. John, “Liquid-Crystal Photonic-Band-Gap materials: the tunable electromagnetic vacuum,” Phys. Rev. Lett. 83(5), 967–970 (1999). [CrossRef]
  16. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid-crystal infiltration,” Phys. Rev. B 61(4), R2389–R2392 (2000). [CrossRef]
  17. G. Mertens, T. Röder, H. Matthias, H. Marsmann, H. S. R. Kitzerow, S. L. Schweizer, C. Jamois, R. B. Wehrspohn, and M. Neubert, “Two and three-dimensional photonic crystals made of macroporous silicon and liquid crystals,” Appl. Phys. Lett. 83(15), 3036 (2003). [CrossRef]
  18. S. M. Weiss, H. Ouyang, J. Zhang, and P. M. Fauchet, “Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals,” Opt. Express 13(4), 1090–1097 (2005). [CrossRef] [PubMed]
  19. Y. Shimoda, M. Ozaki, and K. Yoshino, “Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal,” Appl. Phys. Lett. 79(22), 3627 (2001). [CrossRef]
  20. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, “Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals,” Appl. Phys. Lett. 82(17), 2767 (2003). [CrossRef]
  21. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation,” Opt. Lett. 31(9), 1238 (2006). [CrossRef] [PubMed]
  22. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, “Liquid-crystal electric tuning of a photonic crystal laser,” Appl. Phys. Lett. 85(3), 360 (2004). [CrossRef]
  23. B. Maune, J. Witzens, T. Baehr-Jones, M. Kolodrubetz, H. Atwater, A. Scherer, R. Hagen, and Y. Qiu, “Optically triggered Q-switched photonic crystal laser,” Opt. Express 13(12), 4699–4707 (2005). [CrossRef] [PubMed]
  24. P. El-Kallassi, R. Ferrini, L. Zuppiroli, N. Le Thomas, R. Houdré, A. Berrier, S. Anand, and A. Talneau, “Optical tuning of planar photonic crystals infiltrated with organic molecules,” J. Opt. Soc. Am. B 24(9), 2165 (2007). [CrossRef]
  25. Ch. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, A. Forchel, and S. Anand, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystal,” Appl. Phys. Lett. 87(12), 121105 (2005). [CrossRef]
  26. J. Martz, R. Ferrini, F. Nüesch, L. Zuppiroli, B. Wild, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, “Liquid crystal infiltration of InP-based planar photonic crystals,” J. Appl. Phys. 99(10), 103105 (2006). [CrossRef]
  27. M. A. Dündar, H. H. J. E. Kicken, A. Yu. Silov, R. Nötzel, F. Karouta, H. W. M. Salemink, and R. W. van der Heijden, “Birefringence-induced mode-dependent tuning of liquid crystal infiltrated InGaAsP photonic crystal nanocavities,” Appl. Phys. Lett. 95(18), 181111 (2009). [CrossRef]
  28. M. W. Lee, C. Grillet, C. G. Poulton, C. Monat, C. L. Smith, E. Mägi, D. Freeman, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique,” Opt. Express 16(18), 13800–13808 (2008). [CrossRef] [PubMed]
  29. P. Etchegoin, A. Fainstein, and R. G. Pregliasco, “Optical nonlinearities in the supercooled phase of nematic liquid crystal drops,” Physica D 134(1), 144–151 (1999). [CrossRef]
  30. S. Brugioni and R. Meucci, “Refractive indices of liquid crystals E7 and K15 in the mid- and near-IR regions,” J. Opt. Technol. 73, 315 (2006). [CrossRef]
  31. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes,” Opt. Express 14(1), 369–376 (2006). [CrossRef] [PubMed]
  32. M. Elbaum and S. G. Lipson, “How does a thin wetted film dry up?” Phys. Rev. Lett. 72(22), 3562–3565 (1994). [CrossRef] [PubMed]
  33. Data provided by supplier, Nematel GmbH, Mainz, Germany.
  34. Y. Tanaka, T. Asano, and S. Noda, “Design of Photonic Crystal Nanocavity With Q-Factor of ~109,” J. Lightwave Technol. 26(11), 1532–1539 (2008). [CrossRef]
  35. S. Karnutsch, Tomljenovic-Hanic, C. Monat and B. J. Eggleton “Reconfigurable photonic crystal circuits using microfluidics,” in Optofluidics, Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Eds, (McGraw-Hill, New York, NY., 2009)
  36. I. Langmuir, “The Vapor Pressure of Metallic Tungsten,” Phys. Rev. 2(5), 329–342 (1913). [CrossRef]
  37. F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009). [CrossRef]
  38. L. R. Fisher, R. A. Gamble, and J. Middlehurst, “The Kelvin equation and the capillary condensation of water,” Nature 290(5807), 575–576 (1981). [CrossRef]
  39. C. A. Barrios, M. Holgado, O. Guarneros, K. B. Gylfason, B. Sánchez, R. Casquel, and H. Sohlström, “Reconfiguration of microring resonators by liquid adhesion,” Appl. Phys. Lett. 93(20), 203114 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited