OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27319–27326

Conical diffraction of linearly polarised light controls the angular position of a microscopic object

D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27319-27326 (2010)
http://dx.doi.org/10.1364/OE.18.027319


View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conical diffraction of linearly polarised light in a biaxial crystal produces a beam with a crescent-shaped intensity profile. Rotation of the plane of polarisation produces the unique effect of spatially moving the crescent-shaped beam around a ring. We use this effect to trap microspheres and white blood cells and to position them at any angular position on the ring. Continuous motion around the circle is also demonstrated. This crescent beam does not require an interferometeric arrangement to form it, nor does it carry optical angular momentum. The ability to spatially locate a beam and an associated trapped object simply by varying the polarisation of light suggests that this optical process should find application in the manipulation and actuation of micro- and nano-scale physical and biological objects.

© 2010 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.7010) Lasers and laser optics : Laser trapping
(260.1440) Physical optics : Birefringence

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: October 4, 2010
Revised Manuscript: November 12, 2010
Manuscript Accepted: November 13, 2010
Published: December 13, 2010

Citation
D. P. O’Dwyer, C. F. Phelan, K. E. Ballantine, Y. P. Rakovich, J. G. Lunney, and J. F. Donegan, "Conical diffraction of linearly polarised light controls the angular position of a microscopic object," Opt. Express 18, 27319-27326 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27319


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Phelan, D. P. O’Dwyer, Y. P. Rakovich, J. F. Donegan, and J. G. Lunney, “Conical diffraction and Bessel beam formation with a high optical quality biaxial crystal,” Opt. Express 17(15), 12891–12899 (2009). [CrossRef] [PubMed]
  2. M. V. Berry, M. R. Jeffrey, and J. G. Lunney, “Conical diffraction: observations and theory,” Proc. R. Soc. A. 462(2070), 1629–1642 (2006). [CrossRef]
  3. W. R. Hamilton, “Third supplement to an essay on the theory of system of rays,” Trans. R. Irish Acad. 17, 1–144 (1837).
  4. H. Lloyd, “On the phenomena presented by light in its passage along the axes of biaxial crystals,” Philos. Mag. 1, 112–120 (1833).
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  6. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987). [CrossRef] [PubMed]
  7. K. Svoboda, P. P. Mitra, and S. M. Block, “Fluctuation analysis of motor protein movement and single enzyme kinetics,” Proc. Natl. Acad. Sci. U.S.A. 91(25), 11782–11786 (1994). [CrossRef] [PubMed]
  8. C. Bustamante, S. B. Smith, J. Liphardt, and D. Smith, “Single-molecule studies of DNA mechanics,” Curr. Opin. Struct. Biol. 10(3), 279–285 (2000). [CrossRef] [PubMed]
  9. S. Husale, W. Grange, M. Karle, S. Bürgi, and M. Hegner, “Interaction of cationic surfactants with DNA: a single-molecule study,” Nucleic Acids Res. 36(5), 1443–1449 (2008). [CrossRef] [PubMed]
  10. M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51(11-12), 2259–2280 (2003). [CrossRef]
  11. M. Salomo, U. F. Keyser, M. Struhalla, and F. Kremer, “Optical tweezers to study single protein A/immunoglobulin G interactions at varying conditions,” Eur. Biophys. J. 37(6), 927–934 (2008). [CrossRef] [PubMed]
  12. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]
  13. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89(12), 128301 (2002). [CrossRef] [PubMed]
  14. S. B. Smith, Y. J. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996). [CrossRef] [PubMed]
  15. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008). [CrossRef] [PubMed]
  16. A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002). [CrossRef]
  17. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999). [CrossRef]
  18. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002). [CrossRef] [PubMed]
  19. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003). [CrossRef] [PubMed]
  20. K. Ladavac and D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70(4), 548–554 (2005). [CrossRef]
  21. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001). [CrossRef] [PubMed]
  22. D. M. Villeneuve, S. A. Aseyev, P. Dietrich, M. Spanner, M. Y. Ivanov, and P. B. Corkum, “Forced molecular rotation in an optical centrifuge,” Phys. Rev. Lett. 85(3), 542–545 (2000). [CrossRef] [PubMed]
  23. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  24. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Opt. Express 17(21), 18525–18532 (2009). [CrossRef]
  25. L. Stars and P. Bartlett, “Colliodal dynamics in polymer solutions,” Faraday Discuss. 123, 323–334 (2002).
  26. H. Sosa-Martínez and J. C. Gutierrez-Vega, “Optical Forces on a Mie Spheroidal Particle Arbitrarily Oriented in a Counter-Propagating Trap,” J. Opt. Soc. Am. B 26(11), 2109–2116 (2009). [CrossRef]
  27. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiber-optic trap,” Appl. Opt. 36(25), 6423–6433 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (374 KB)     
» Media 2: MOV (528 KB)     
» Media 3: MOV (500 KB)     
» Media 4: MOV (1978 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited