OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27371–27386

Role of structural electromagnetic resonances in a steerable left-handed antenna

Kazuaki Sakoda and Haifeng Zhou  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27371-27386 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We reformulate the problem of a steerable left-handed antenna reported by Matsuzawa et al. [IEICE Trans. Electron. E89-C, 1337 (2006)] from the view point of structural electromagnetic resonance of the unit structure. We show that there are two such resonances with different spatial symmetries in the relevant frequency range, which result in the formation of two electromagnetic bands with opposite signs of curvature at the Γ point of the Brillouin zone. We derive an expression of dispersion curves based on the tight-binding picture and show that the dispersion of the two bands is linear in the vicinity of the Γ point in the case of accidental degeneracy only if the symmetry of the two resonance states satisfies certain conditions. We also show that the refraction angle can be designed by changing the lattice constant of the arrayed unit structures, since the band width is modified due to the change in the electromagnetic transfer integral.

© 2010 Optical Society of America

OCIS Codes
(280.5600) Remote sensing and sensors : Radar
(350.4010) Other areas of optics : Microwaves
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: November 4, 2010
Revised Manuscript: December 8, 2010
Manuscript Accepted: December 9, 2010
Published: December 13, 2010

Kazuaki Sakoda and Haifeng Zhou, "Role of structural electromagnetic resonances in a steerable left-handed antenna," Opt. Express 18, 27371-27386 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of sigma and mu," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  6. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  7. S. A. Ramakrishna, and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (SPIE Press, 2008). [CrossRef]
  8. S. Matsuzawa, K. Sato, Y. Inoue, and T. Nomura, ""W-band steerable composite right/left-handed leaky wave antenna for automotive applications," IEICE Trans. Electron. E 89-C, 1337-1344 (2006). [CrossRef]
  9. A. Grbic, and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," J. Appl. Phys. 92, 5930-5935 (2002). [CrossRef]
  10. C. Caloz, and T. Ito, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line," IEEE-AP-S Int. Symp. Dig. 2, 412-415 (2002).
  11. S. Tokoro, K. Kuroda, A. Kawakubo, K. Fujita, and H. Fujinami, "Electronically scanned millimeter-wave radar for pre-crush safety and adaptive cruise control system," Proc. IEEE Intelligent Vehicles Symp., 304-309 (2003).
  12. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  13. K. Sakoda, Optical Properties of Photonic Crystals, 2nd Ed. (Springer-Verlag, Berlin, 2004).
  14. T. Ito, and K. Sakoda, "Photonic bands of metallic systems. II. Features of surface plasmon polaritons," Phys. Rev. B 64, 045117 (2001). [CrossRef]
  15. A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).
  16. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press, Piscataway, 2000). [CrossRef]
  17. N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, 1993) Sec. 2.5.
  18. T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, Berlin, 1990).
  19. P. Yeh, "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Am. 69, 742-756 (1979). [CrossRef]
  20. C. Caloz, A. Lai, and T. Itoh, "The challenge of homogenization in metamaterials," N. J. Phys. 7, 167 (2005). [CrossRef]
  21. A. Lai, T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, September issue, 34-50 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited