OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27431–27444

Terahertz and far infrared Spectroscopy of alanine-rich peptides having variable ellipticity

Tao Ding, Ruoyu Li, J. Axel Zeitler, Thomas L. Huber, Lynn F. Gladden, Anton P. J. Middelberg, and Robert J. Falconer  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27431-27444 (2010)
http://dx.doi.org/10.1364/OE.18.027431


View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terahertz spectra of four alanine-rich peptides with known secondary structures were studied by terahertz time domain spectroscopy (THz-TDS) and by Fourier transform infrared spectroscopy (FTIR) using a synchrotron light source and a liquid-helium cooled bolometer. At ambient temperatures the usable bandwidth was restricted to 0.2-1.5 THz by the absorbance of water. The existence of a solvation shell around the peptide in solution was observed and its size estimated to be between 11 and 17 Å. By cooling the peptide solution to 80 K in order to reduce the water absorbance the bandwidth was increased to 0.1-3.0 THz for both THz-TDS and FTIR. Spectra were consistent with monotonic absorbance of the peptide and the existence of a solid amorphous low density solvation shell.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Spectroscopy

History
Original Manuscript: October 27, 2010
Revised Manuscript: December 8, 2010
Manuscript Accepted: December 8, 2010
Published: December 14, 2010

Citation
Tao Ding, Ruoyu Li, J. Axel Zeitler, Thomas L. Huber, Lynn F. Gladden, Anton P. J. Middelberg, and Robert J. Falconer, "Terahertz and far infrared Spectroscopy of alanine-rich peptides having variable ellipticity," Opt. Express 18, 27431-27444 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27431


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4-5), 310–313 (2002). [CrossRef] [PubMed]
  2. B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, “Chemical recognition in terahertz time-domain spectroscopy and imaging,” Semicond. Sci. Technol. 20(7), S246–S253 (2005). [CrossRef]
  3. M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003). [CrossRef]
  4. B. Brooks and M. Karplus, “Normal modes for specific motions of macromolecules: application to the hinge-bending mode of lysozyme,” Proc. Natl. Acad. Sci. U.S.A. 82(15), 4995–4999 (1985). [CrossRef] [PubMed]
  5. Y. Seno and N. Go, “Deoxymyoglobin studied by the conformational normal mode analysis. II. The conformational change upon oxygenation,” J. Mol. Biol. 216(1), 111–126 (1990). [CrossRef] [PubMed]
  6. W. N. Wang, Y. B. Li, and W. W. Yue, “Vibrational spectrum of histidine and arginine in THz range,” Acta. Phys. Sin. 56, 781–785 (2007).
  7. R. Rungsawang, Y. Ueno, I. Tomita, and K. Ajito, “Angle-dependent terahertz time-domain spectroscopy of amino acid single crystals,” J. Phys. Chem. B 110(42), 21259–21263 (2006). [CrossRef] [PubMed]
  8. A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz,” Chem. Phys. Lett. 320(1-2), 42–48 (2000). [CrossRef]
  9. G. M. Png, R. J. Falconer, B. M. Fischer, H. A. Zakaria, S. P. Mickan, A. P. J. Middelberg, and D. Abbott, “Terahertz spectroscopic differentiation of microstructures in protein gels,” Opt. Express 17(15), 13102–13115 (2009). [CrossRef] [PubMed]
  10. S. Ebbinghaus, S. J. Kim, M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner, and M. Havenith, “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A. 104(52), 20749–20752 (2007). [CrossRef] [PubMed]
  11. J. Xu, K. W. Plaxco, and S. J. Allen, “Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy,” Protein Sci. 15(5), 1175–1181 (2006). [CrossRef] [PubMed]
  12. M. Nagai, H. Yada, T. Arikawa, and K. Tanaka, “Terahertz time-domain attenuated total reflection spectroscopy in water and biological solution,” Int. J. Infrared Millim. Waves 27(4), 505–515 (2007). [CrossRef]
  13. E. Castro-Camus and M. B. Johnston, “Conformational changes of photoactive yellow protein monitored by terahertz spectroscopy,” Chem. Phys. Lett. 455(4-6), 289–292 (2008). [CrossRef]
  14. Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101(17), 178103 (2008). [CrossRef] [PubMed]
  15. A. G. Markelz, J. R. Knab, J. Y. Chen, and Y. F. He, “Protein dynamical transition in terahertz dielectric response,” Chem. Phys. Lett. 442(4-6), 413–417 (2007). [CrossRef]
  16. B. Born, H. Weingärtner, E. Bründermann, and M. Havenith, “Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions Observation of the Onset of Collective Network Motions,” J. Am. Chem. Soc. 131(10), 3752–3755 (2009). [CrossRef] [PubMed]
  17. A. Chakrabartty, T. Kortemme, and R. L. Baldwin, “Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions,” Protein Sci. 3(5), 843–852 (1994). [CrossRef] [PubMed]
  18. T. Hirschfeld and A. W. Mantz, “Elimination of thin-film infrared channel spectra in fourier-transform infrared spectroscopy,” Appl. Spectrosc. 30(5), 552–553 (1976). [CrossRef]
  19. E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: a package for molecular simulation and trajectory analysis,” J. Mol. Model. 7, 306–317 (2001).
  20. B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday Discuss. 141, 161–173, discussion 175–207 (2008). [CrossRef]
  21. T. Arikawa, M. Nagai, and K. Tanaka, “Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy,” Chem. Phys. Lett. 457(1-3), 12–17 (2008). [CrossRef]
  22. S. Mashimo, S. Kuwabara, S. Yagihara, and K. Higasi, “Dielectric-releaxation time and structure of bound water in biological materials,” J. Phys. Chem. 91(25), 6337–6338 (1987). [CrossRef]
  23. P. M. Chaikin, A. Donev, W. Man, F. H Stillinger, and S. Torquato, “Some observations on the random packing of hard ellipoiods,” Ind. Eng. Chem. Res. 45, 6960–6965 (2006). [CrossRef]
  24. U. Heugen, G. Schwaab, E. Bründermann, M. Heyden, X. Yu, D. M. Leitner, and M. Havenith, “Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 103(33), 12301–12306 (2006). [CrossRef] [PubMed]
  25. J. E. Bertie, H. J. Labbe, and E. Whally, “Absorptivity of ice I in range 4000-30 cm-1,” J. Chem. Phys. 50(10), 4501–4520 (1969). [CrossRef]
  26. G. W. Chantry, E. A. Nicol, H. A. Willis, and M. E. A. Cudby, “Far infrared studies of the formation of potassium fluoride dihydrate in and its interaction with low molecular weight polytetrafluorethylene,” Int. J. Infrared Millim. Waves 2(1), 97–105 (1981). [CrossRef]
  27. C. J. Raj, S. Krishnan, S. Dinakaran, R. Uthrakumar, and S. J. Das, “Growth and optical absorption studies on potassium dihydrogen phosphate single crystals,” Cryst. Res. Technol. 43(3), 245–247 (2008). [CrossRef]
  28. A. H. Xie, Q. He, L. Miller, B. Sclavi, and M. R. Chance, “Low frequency vibrations of amino acid homopolymers observed by synchrotron far-IR absorption spectroscopy: Excited state effects dominate the temperature dependence of the spectra,” Biopolymers 49(7), 591–603 (1999). [CrossRef]
  29. A. K. Soper, “Structural transformations in amorphous ice and supercooled water and their relevance to the phase diagram of water,” Mol. Phys. 106(16), 2053–2076 (2008). [CrossRef]
  30. S. H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, and E. Mamontov, “Observation of fragile-to-strong dynamic crossover in protein hydration water,” Proc. Natl. Acad. Sci. U.S.A. 103(24), 9012–9016 (2006). [CrossRef] [PubMed]
  31. J. A. Zeitler, P. F. Taday, K. C. Gordon, M. Pepper, and T. Rades, “Solid-state transition mechanism in carbamazepine polymorphs by time-resolved terahertz spectroscopy,” ChemPhysChem 8(13), 1924–1927 (2007). [CrossRef] [PubMed]
  32. J. A. Zeitler, P. F. Taday, M. Pepper, and T. Rades, “Relaxation and crystallization of amorphous carbamazepine studied by terahertz pulsed spectroscopy,” J. Pharm. Sci. 96(10), 2703–2709 (2007). [CrossRef] [PubMed]
  33. S. C. Shen, L. Santo, and L. Genzel, “THz spectra for some bio-molecules,” Int. J. Infrared Millim. Waves 28(8), 595–610 (2007). [CrossRef]
  34. F. Haselhuhn, S. Doyle, and M. Kind, “Synchrotron radiation X-ray diffraction study of the particle formation of pseudo-polymorphic calcium oxalate,” J. Cryst. Growth 289(2), 727–733 (2006). [CrossRef]
  35. I. Jelesarov, E. Dürr, R. M. Thomas, and H. R. Bosshard, “Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper),” Biochemistry 37(20), 7539–7550 (1998). [CrossRef] [PubMed]
  36. G. H. Nancollas and G. L. Gardner, “Kinetics of crystal-growth of calcium-oxalate monohydrate,” J. Cryst. Growth 21(2), 267–276 (1974). [CrossRef]
  37. R. J. Falconer, H. A. Zakaria, Y. Y. Fan, A. P. Bradley, and A. P. J. Middelberg, “Far-infrared spectroscopy of protein higher-order structures,” Appl. Spectrosc. 64(11), 1259–1264 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited