OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27481–27492

Grazing angle Mach-Zehnder interferometer using reflective phase gratings and a polychromatic, un-collimated light source

Camille K. Kemble, Julie Auxier, Susanna K. Lynch, Eric E. Bennett, Nicole Y. Morgan, and Han Wen  »View Author Affiliations

Optics Express, Vol. 18, Issue 26, pp. 27481-27492 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Normal incidence Talbot-Lau interferometers in x-ray applications have the drawbacks of low fringe visibility with polychromatic sources when the wave propagation distance is increased to achieve higher phase sensitivity, and when fabrication limits the attainable grating density. In contrast, reflective gratings illuminated at grazing angles have dramatically higher effective densities than their physical values. However, new designs are needed for far field interferometers using grazing angle geometry with incoherent light sources. We show that, with the appropriate design and choice of reflective phase gratings, there exist pairs of interfering pathways of exactly equal lengths independent of the incoming beam’s incidence angle and wavelength. With a visible light grazing angle Mach-Zehnder interferometer, we show the conditions for achieving near ideal fringe visibility and demonstrate both absolute and differential phase-contrast imaging. We also describe the design parameters of an x-ray interferometer and key factors for its implementation.

© 2010 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(340.7450) X-ray optics : X-ray interferometry
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
X-ray Optics

Original Manuscript: November 2, 2010
Revised Manuscript: December 1, 2010
Manuscript Accepted: December 9, 2010
Published: December 14, 2010

Camille K. Kemble, Julie Auxier, Susanna K. Lynch, Eric E. Bennett, Nicole Y. Morgan, and Han Wen, "Grazing angle Mach-Zehnder interferometer using reflective phase gratings and a polychromatic, un-collimated light source," Opt. Express 18, 27481-27492 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Clauser and S. F. Li, “Talbot-vonLau atom interferometry with cold slow potassium,” Phys. Rev. A 49(4), R2213–R2216 (1994). [CrossRef] [PubMed]
  2. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  3. M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008). [CrossRef] [PubMed]
  4. Z. L. Wang, P. P. Zhu, W. X. Huang, Q. X. Yuan, X. S. Liu, K. Zhang, Y. L. Hong, H. T. Zhang, X. Ge, K. Gao, and Z. Y. Wu, “Analysis of polychromaticity effects in X-ray Talbot interferometer,” Anal. Bioanal. Chem. 397(6), 2137–2141 (2010). [CrossRef] [PubMed]
  5. D. Noda, M. Tanaka, K. Shimada, W. Yashiro, A. Momose, and T. Hattori, “Fabrication of large area diffraction grating using LIGA process,” Microsyst. Technol. 14, 1311–1315 (2008). [CrossRef]
  6. B. J. Chang, R. Alferness, and E. N. Leith, “Space-invariant achromatic grating interferometers: theory,” Appl. Opt. 14(7), 1592–1600 (1975). [CrossRef] [PubMed]
  7. D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard, “An interferometer for atoms,” Phys. Rev. Lett. 66(21), 2693–2696 (1991). [CrossRef] [PubMed]
  8. L. A. Sayce, and A. Franks, “N.P.L. Gratings for X-Ray Spectroscopy,” Proc. R. Soc. London 282, 353- + (1964).
  9. J. Filevich, K. Kanizay, M. C. Marconi, J. L. A. Chilla, and J. J. Rocca, “Dense plasma diagnostics with an amplitude-division soft-x-ray laser interferometer based on diffraction gratings,” Opt. Lett. 25(5), 356–358 (2000). [CrossRef]
  10. D. Stutman, M. Finkenthal, and N. Moldovan, “Development of microperiodic mirrors for hard x-ray phase-contrast imaging,” Appl. Opt. 49(25), 4677–4686 (2010). [CrossRef] [PubMed]
  11. C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002). [CrossRef]
  12. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and Interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  13. H. Wen, E. E. Bennett, M. M. Hegedus, and S. C. Carroll, “Spatial harmonic imaging of X-ray scattering--initial results,” IEEE Trans. Med. Imaging 27(8), 997–1002 (2008). [CrossRef] [PubMed]
  14. H. Wen, E. E. Bennett, M. M. Hegedus, and S. Rapacchi, “Fourier X-ray scattering radiography yields bone structural information,” Radiology 251(3), 910–918 (2009). [CrossRef] [PubMed]
  15. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med. 2(4), 473–475 (1996). [CrossRef] [PubMed]
  16. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997). [CrossRef] [PubMed]
  17. C. Muehleman, J. Li, D. Connor, C. Parham, E. Pisano, and Z. Zhong, “Diffraction-enhanced imaging of musculoskeletal tissues using a conventional x-ray tube,” Acad. Radiol. 16(8), 918–923 (2009). [CrossRef] [PubMed]
  18. I. Nesch, D. P. Fogarty, T. Tzvetkov, B. Reinhart, A. C. Walus, G. Khelashvili, C. Muehleman, and D. Chapman, “The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument,” Rev. Sci. Instrum. 80(9), 093702 (2009). [CrossRef] [PubMed]
  19. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, “Breaking the 10 nm barrier in hard x-ray focusing,” Nat. Phys. 6(2), 57–60 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited