OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27525–27533

Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching

Krassimir Panajotov, Mateusz Zujewski, and Hugo Thienpont  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27525-27533 (2010)
http://dx.doi.org/10.1364/OE.18.027525


View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform a theoretical linear study of the spectral and polarization threshold characteristics of coupled-cavity Vertical-Surface-Emitting Lasers (CC-VCSEL) on the base of a simple matrix approach. We show that strong wavelength discrimination can be achieved in CC-VCSELs by slightly detuning the cavities. However, polarization discrimination is not provided by the coupled-cavity design. We also consider the case of reverse-biasing one of the cavities, i.e. using it as a modulator via linear and/or quadratic electrooptic effect. Such a CC-VCSEL can act as a voltage-controlled polarization or wavelength switching device that is decoupled from the laser design. We also show that using QD stack instead of quantum wells in the top cavity would lead to significant reduction of the driving electrical field.

© 2010 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 4, 2010
Revised Manuscript: September 21, 2010
Manuscript Accepted: October 11, 2010
Published: December 15, 2010

Citation
Krassimir P. Panajotov, Mateusz Zujewski, and Hugo Thienpont, "Coupled-cavity surface-emitting lasers: spectral and polarization threshold characteristics and electrooptic switching," Opt. Express 18, 27525-27533 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27525


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Wesbuch, "Coupled semiconductor microcavities," Appl. Phys. Lett. 65, 2093-2095 (1994). [CrossRef]
  2. P. Pellandini, R. P. Stanley, R. Houdre, U. Oesterle, M. Illegems, and C. Weisbuch, "Dual-wavelength emission from coupled semiconductor microcavity," Appl. Phys. Lett. 71, 864-866 (1997). [CrossRef]
  3. P. Michler, H. Hilpert, and G. Reiner, "Dynamics of dual-wavelength emission from coupled semiconductor microcavity laser," Appl. Phys. Lett. 70, 2073-2075 (1997). [CrossRef]
  4. J. F. Carlin, R. P. Stanley, P. Pellandini, U. Oestertle, and M. Illegems, "The dual wavelength Bi-vertical cavity surface-emitting laser," Appl. Phys. Lett. 75, 908-910 (2000). [CrossRef]
  5. M. Brunner, K. Gulden, R. Hovel, M. Moser, J. F. Carlin, R. P. Stanley, and M. Illegems, "Continuous-Wave Dual-Wavelength Lasing in a Two-Section Vertical-Cavity Laser," IEEE Photon. Technol. Lett. 12, 1316-1318 (2000). [CrossRef]
  6. V. Badilita, J.-F. Carlin, M. Ilegems, and K. Panajotov, "Rate-Equation Model for Coupled-Cavity Surface-Emitting Lasers," IEEE J. Quantum Electron. 40, 1646-1656 (2004). [CrossRef]
  7. D. M. Crasso, and K. D. Choquette, "Threshold and Modal Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 39, 1526-1530 (2003). [CrossRef]
  8. A. J. Fischer, K. D. Choquette, W. W. Chow, A. A. Allerman, D. K. Serkland, and K. M. Geib, "High single-mode power observed from a coupled-resonator vertical-cavity laser diode," Appl. Phys. Lett. 79, 4079-4081 (2001). [CrossRef]
  9. A. J. Fischer, W. W. Chow, K. D. Choquette, A. A. Allerman, and K. M. Geib, "Q-switched operation of a coupled-resonator vertical-cavity diode," Appl. Phys. Lett. 76, 1975-1977 (1999). [CrossRef]
  10. V. Badilita, J. F. Carlin, M. Illegems, M. Brunner, G. Vershaffelt, and K. Panajotov, "Control of Polarization Switching in Vertical Coupled-Cavities Surface-Emitting Lasers," IEEE Photon. Technol. Lett. 16, 365-367 (2004). [CrossRef]
  11. D. M. Crasso, and K. D. Choquette, "Temperature-Dependent Polarization Characteristics of Composite-Resonator Vertical-Cavity Lasers," IEEE J. Quantum Electron. 41, 127-131 (2005). [CrossRef]
  12. L. Chusseau, G. Almuneau, L. A. Coldren, A. Huntington, and D. Gasquet, "Coupled-cavity vertical-emitting semiconductor laser for continuous-wave terahertz emission," IEE Proc., Optoelectron. 149, 88-92 (2002). [CrossRef]
  13. C. Chen, K. Johnson, M. Hibbs-Brenner, and K. D. Choquette, "Push-Pull Modulation of a Composite-Resonator Vertical-Cavity Laser," IEEE J. Quantum Electron. 46, 438-446 (2010). [CrossRef]
  14. M. Born, and E. Wolf, Principles of Optics (Wiley, New York, 1970).
  15. A. K. Jansen van Doornen, M. P. van Exter, and J. P. Woerdman, "Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers," Appl. Phys. Lett. 69, 1041-1043 (1996). [CrossRef]
  16. K. Panajotov, J. Danckaert, G. Verschaffelt, M. Peeters, B. Nagler, J. Albert, B. Ryvkin, H. Thienpont, and I. Veretennicoff, "Polarization behavior of vertical-cavity surface-emitting lasers: experiments, models and applications," in Nanoscale Linear and Nonlinear Optics, M. Bertolotti, C. M. Bowden, and C. Sibilia, eds., 560, 403-417, (American Institute of Physics, Melville, N.Y., 2001).
  17. A. Bhatnagar, D. W. E. Allsopp, X. Chen, M. P. Earnshaw, and W. Batty, "Eletro-refraction Associated with Wannier-Stark Localization in Strongly Coupled Three-Quantum-Well Structures," IEEE J. Quantum Electron. 36, 702-707 (2000). [CrossRef]
  18. M. P. Earnshaw, and D. W. E. Allsopp, "Electrooptic Effects in GaAsAlGaAs Narrow Coupled Quantum Wells," IEEE J. Quantum Electron. 37, 897-904 (2001). [CrossRef]
  19. D. Burak, J. V. Moloney, and R. Binder, "Microscopic theory of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," Phys. Rev. A 61, 053809 (2000). [CrossRef]
  20. K. Panajotov, B. Nagler, G. Verschaffelt, A. Georgievski, H. Thienpont, J. Danckaert, and I. Veretennicoff, "Impact of in-plane anisotropic strain on the polarization behaviour of vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 77, 1590-1592 (2000). [CrossRef]
  21. J. M. Ostermann, F. Rinaldi, P. Debernardi, and R. Michalzik, "VCSELs with enhanced single-mode power and stabilized polarization for oxygen sensing," IEEE Photon. Technol. Lett. 17, 2256-2258 (2005). [CrossRef]
  22. G. Moreau, A. Martinez, D. Y. Cong, K. Merghem, A. Miard, A. Lematre, P. Voisin, A. Ramdane, I. Krestnikov, A. R. Kovsh, M. Fischer, and J. Koeth, "Enhanced In(Ga)As/GaAs quantum dot based electrooptic modulation at 1.55 m," Appl. Phys. Lett. 91, 91118 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited