OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27589–27605

Light absorption and emission in nanowire array solar cells

Jan Kupec, Ralph L. Stoop, and Bernd Witzigmann  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27589-27605 (2010)
http://dx.doi.org/10.1364/OE.18.027589


View Full Text Article

Enhanced HTML    Acrobat PDF (2005 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Inorganic nanowires are under intense research for large scale solar power generation intended to ultimately contribute a substantial fraction to the overall power mix. Their unique feature is to allow different pathways for the light absorption and carrier transport. In this publication we investigate the properties of a nanowire array acting as a photonic device governed by wave-optical phenomena. We solve the Maxwell equations and calculate the light absorption efficiency for the AM1.5d spectrum and give recommendations on the design. Due to concentration of the incident sunlight at a microscopic level the absorptivity of nanowire solar cells can exceed the absorptivity of an equal amount of material used in thin-film devices. We compute the local density of photon states to assess the effect of emission enhancement, which influences the radiative lifetime of excess carriers. This allows us to compute the efficiency limit within the framework of detailed balance. The efficiency is highly sensitive with respect to the diameter and distance of the nanowires. Designs featuring nanowires below a certain diameter will intrinsically feature low short-circuit current that cannot be compensated even by increasing the nanowire density. Optimum efficiency is not achieved in densely packed arrays, in fact spacing the nanowires further apart (simultaneously decreasing the material use) can even improve efficiency in certain scenarios. We observe absorption enhancement reducing the material use. In terms of carrier generation per material use, nanowire devices can outperform thin-film devices by far.

© 2010 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy
(160.5298) Materials : Photonic crystals

ToC Category:
Solar Energy

History
Original Manuscript: October 27, 2010
Revised Manuscript: November 26, 2010
Manuscript Accepted: December 7, 2010
Published: December 15, 2010

Citation
Jan Kupec, Ralph L. Stoop, and Bernd Witzigmann, "Light absorption and emission in nanowire array solar cells," Opt. Express 18, 27589-27605 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. Rep. 62, 175–189 (2008). [CrossRef]
  2. B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885 (2007). [CrossRef]
  3. T. Kempa, B. Tian, D. Kim, J. Hu, X. Zheng, and C. Lieber, “Single and tandem axial pin nanowire photovoltaic devices,” Nano Lett. 8, 3456–3460 (2008). [CrossRef] [PubMed]
  4. B. Tian, T. Kempa, and C. Lieber, “Single nanowire photovoltaics,” Chem. Soc. Rev. 38, 16–24 (2009). [CrossRef]
  5. H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, “Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Express 2, 5004 (2009). [CrossRef]
  6. C. Colombo, M. Heiß, M. Grätzel, and A. i Morral, “Gallium arsenide pin radial structures for photovoltaic applications,”, Appl. Phys. Lett. 94, 173108 (2009). [CrossRef]
  7. Y. Lu, and A. Lal, “High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography,” Nano Lett. 10, 4651–4656 (2010). [CrossRef] [PubMed]
  8. E. Garnett, and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010). [CrossRef] [PubMed]
  9. D. Kumar, S. Srivastava, P. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95, 215–218 (2011). [CrossRef]
  10. J. Jung, Z. Guo, S. Jee, H. Um, K. Park, and J. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18, A286–A292 (2010). [CrossRef] [PubMed]
  11. N. Lagos, M. Sigalas, and D. Niarchos, “The optical absorption of nanowire arrays,” Photonics Nanostruct. Fundam. Appl. in press,corrected proof, (2010).
  12. C. Kendrick, H. Yoon, Y. Yuwen, G. Barber, H. Shen, T. Mallouk, E. Dickey, T. Mayer, and J. Redwing, “Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor-liquid-solid growth,” Appl. Phys. Lett. 97, 143108 (2010). [CrossRef]
  13. Q. Shu, J. Wei, K. Wang, S. Song, N. Guo, Y. Jia, Z. Li, Y. Xu, A. Cao, H. Zhu, and D. Wu, “Efficient energy conversion of nanotube/nanowire-based solar cells,” Chem. Commun. (Camb.) 46, 5533–5535 (2010). [CrossRef]
  14. L. Hu, and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007). [CrossRef] [PubMed]
  15. B. Kayes, H. Atwater, and N. Lewis, “Comparison of the device physics principles of planar and radial pn junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005). [CrossRef]
  16. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009). [CrossRef] [PubMed]
  17. J. Kupec, and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17, 10399–10410 (2009). [CrossRef] [PubMed]
  18. A. Kandala, and T. Betti, “A. i Morral, M. Senfed, and D. Nim, “General theoretical considerations on nanowire solar cell designs,” Phys. Status Solidi C 206, 173–178 (2008).
  19. M. Kelzenberg, S. Boettcher, J. Petykiewicz, D. Turner-Evans, M. Putnam, E. Warren, J. Spurgeon, R. Briggs, N. Lewis, and H. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010). [CrossRef] [PubMed]
  20. J. Wallentin, J. Persson, J. Wagner, L. Samuelson, K. Deppert, and M. Borgström, “High-performance single nanowire tunnel diodes,” Nano Lett. 3, 603–604 (2010).
  21. J. Jianming, The finite element method in electromagnetics (Wiley & Sons, 1993).
  22. F. Römer, and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B 25, 31–39 (2008). [CrossRef]
  23. E. Palik, Handbook of optical constants of solids (Academic Press, 1985).
  24. W. Shockley, and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961). [CrossRef]
  25. J. Kupec, S. Yu, and B. Witzigmann, “Zonal efficiency limit calculation for nanostructured solar cells,” Proc. SPIE 7597, 759704 (2010). [CrossRef]
  26. D. Duché, L. Escoubas, J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
  27. N. Anttu, and H. Xu, “Coupling of light into nanowire arrays and subsequent absorption,” J. Nanosci. Nanotechnol. 10, 7183–7187 (2010). [CrossRef]
  28. H. Ries, G. Smestad, and R. Winston, “Thermodynamics of light concentrators,” Proc. SPIE 1528, 7–14 (1991). [CrossRef]
  29. G. Létay, and A. Bett, “EtaOpt–a program for calculating limiting efficiency and optimum bandgap structure for multi-bandgap solar cells and TPV cells,” IEEE Spectr. 20, 25 (2001).
  30. G. Létay, Modellierung von III–V Solarzellen (Universit¨at Konstanz, Germany, 2003).
  31. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. Sol. Cells 21, 99–111 (1990). [CrossRef]
  32. L. Cao, P. Fan, A. Vasudev, J. White, Z. Yu, W. Cai, J. Schuller, S. Fan, and M. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 2, 439–445 (2010). [CrossRef]
  33. C. Lin, and M. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009). [CrossRef] [PubMed]
  34. D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006). [CrossRef]
  35. D. Schaadt, B. Feng, and E. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  36. K. Catchpole, and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008). [CrossRef] [PubMed]
  37. W. Spirkl, and H. Ries, “Luminescence and efficiency of an ideal photovoltaic cell with charge carrier multiplication,” Phys. Rev. B 52, 11319–11325 (1995). [CrossRef]
  38. G. Araújo, and A. Martí, “Absolute limiting efficiencies for photovoltaic energy conversion,” Sol. Energy Mater. Sol. Cells 33, 213–240 (1994). [CrossRef]
  39. O. Stefano, N. Fina, S. Savasta, R. Girlanda, and M. Pieruccini, “Calculation of the local optical density of states in absorbing and gain media,” J. Phys. Condens. Matter 22, 315302 (2010). [CrossRef]
  40. D. Fussell, R. McPhedran, and C. Martijn de Sterke, “Three-dimensional Greens tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 66608 (2004). [CrossRef]
  41. G. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among one-photon transition probabilities in stationary and nonstationary fields, density of states, the field-correlation functions, and surface-dependent response functions,” Phys. Rev. A 11, 253–264 (1975). [CrossRef]
  42. E. Purcell, H. Torrey, and R. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38 (1946). [CrossRef]
  43. S. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763 (1996). [CrossRef]
  44. Z. Djuri, Z. Jaki, D. Randjelovi, T. Dankovi, W. Ehrfeld, and A. Schmidt, “Enhancement of radiative lifetime in semiconductors using photonic crystals,” Infrared Phys. Technol. 40, 25–32 (1999). [CrossRef]
  45. P. Würfel, Physics of solar cells (Wiley Online Library, 2005). [CrossRef]
  46. J. Joannopoulos, and J. Winn, Photonic crystals: molding the flow of light (Princeton Univ. Press, 2008).
  47. F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited