OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27627–27638

Loss engineered slow light waveguides

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27627-27638 (2010)
http://dx.doi.org/10.1364/OE.18.027627


View Full Text Article

Enhanced HTML    Acrobat PDF (1311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Slow light devices such as photonic crystal waveguides (PhCW) and coupled resonator optical waveguides (CROW) have much promise for optical signal processing applications and a number of successful demonstrations underpinning this promise have already been made. Most of these applications are limited by propagation losses, especially for higher group indices. These losses are caused by technological imperfections (“extrinsic loss”) that cause scattering of light from the waveguide mode. The relationship between this loss and the group velocity is complex and until now has not been fully understood. Here, we present a comprehensive explanation of the extrinsic loss mechanisms in PhC waveguides and address some misconceptions surrounding loss and slow light that have arisen in recent years. We develop a theoretical model that accurately describes the loss spectra of PhC waveguides. One of the key insights of the model is that the entire hole contributes coherently to the scattering process, in contrast to previous models that added up the scattering from short sections incoherently. As a result, we have already realised waveguides with significantly lower losses than comparable photonic crystal waveguides as well as achieving propagation losses, in units of loss per unit time (dB/ns) that are even lower than those of state-of-the-art coupled resonator optical waveguides based on silicon photonic wires. The model will enable more advanced designs with further loss reduction within existing technological constraints.

© 2010 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(290.5910) Scattering : Scattering, stimulated Raman
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Slow and Fast Light

History
Original Manuscript: November 8, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 10, 2010
Published: December 15, 2010

Citation
L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, "Loss engineered slow light waveguides," Opt. Express 18, 27627-27638 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Karle, Y. J. Chai, C. N. Morgan, I. H. White, and T. F. Krauss, “Observation of pulse compression in photonic crystal coupled cavity waveguides,” J. Lightwave Technol. 22(2), 514–519 (2004). [CrossRef]
  2. A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samatelli, and M. Sorel, “Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison,” IEEE Photonics Technol. Lett. 2, 181–194 (2010).
  3. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004). [CrossRef] [PubMed]
  4. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008). [CrossRef] [PubMed]
  5. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  6. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, “Ultracompact and low power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008). [CrossRef] [PubMed]
  7. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O'Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009). [CrossRef] [PubMed]
  8. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009). [CrossRef] [PubMed]
  9. A. Melloni, F. Morichetti, and M. Martinelli, “Four-wave mixing and wavelength conversion in coupled-resonator optical waveguides,” J. Opt. Soc. Am. B 25(12), C87–C97 (2008). [CrossRef]
  10. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005). [CrossRef]
  11. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett. 94(3), 033903 (2005). [CrossRef] [PubMed]
  12. S. G. Johnson, M. L. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005). [CrossRef]
  13. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett. 104(3), 033902 (2010). [CrossRef] [PubMed]
  14. F. Morichetti, A. Canciamilla, M. Martinelli, A. Samarelli, R. M. De La Rue, M. Sorel, and A. Melloni, “Coherent backscattering in optical microring resonators,” Appl. Phys. Lett. 96(8), 081112 (2010). [CrossRef]
  15. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87(25), 253902 (2001). [CrossRef] [PubMed]
  16. J. Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  17. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458 (2007). [CrossRef] [PubMed]
  18. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsequioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008). [CrossRef]
  19. T. P. White, L. O'Faolain, J. T. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008). [CrossRef] [PubMed]
  20. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi, B Basic Res. 244(10), 3528–3539 (2007). [CrossRef]
  21. Here α is defined as <lnT> = -αL, with <lnT> the ensemble-averaged logarithm of the transmission, which is valid both in the ballistic and the multiple scattering regime [24].
  22. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80(19), 195305 (2009). [CrossRef]
  23. A. Petrov, M. Krause, and M. Eich, “Backscattering and disorder limits in slow light photonic crystal waveguides,” Opt. Express 17(10), 8676–8684 (2009). [CrossRef] [PubMed]
  24. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-Induced Multiple Scattering in Photonic-Crystal Waveguides,” Phys. Rev. Lett. 103(6), 063903 (2009). [CrossRef] [PubMed]
  25. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  26. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78(24), 245108 (2008). [CrossRef]
  27. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15(18), 11042–11060 (2007). [CrossRef] [PubMed]
  28. The code written by D. M. Beggs and S. A. Schulz is available for free at: www.st-andrews.ac.uk/microphotonics
  29. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. 48, 3187–3215 (1969).
  30. L. O'Faolain, T. P. White, D. O'Brien, X. D. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15(20), 13129–13138 (2007). [CrossRef] [PubMed]
  31. L. O'Faolain, X. Yuan, D. Mcintyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006). [CrossRef]
  32. S. A. Schulz, L. O'Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010). [CrossRef]
  33. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90(26), 261107 (2007). [CrossRef]
  34. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007). [CrossRef]
  35. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two Regimes of Slow-Light Losses Revealed by Adiabatic Reduction of Group Velocity,” Phys. Rev. Lett. 101(10), 103901 (2008). [CrossRef] [PubMed]
  36. S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenovic, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18(14), 14654–14663 (2010). [CrossRef] [PubMed]
  37. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking Femtosecond Laser Pulses in Space and Time,” Science 294(5544), 1080–1082 (2001). [CrossRef] [PubMed]
  38. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007). [CrossRef] [PubMed]
  39. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited