OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 26 — Dec. 20, 2010
  • pp: 27639–27649

Numerical investigation on polarization characteristics of coherent enhanced backscattering using SLPSTD

Ming Ding and Kun Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 26, pp. 27639-27649 (2010)
http://dx.doi.org/10.1364/OE.18.027639


View Full Text Article

Enhanced HTML    Acrobat PDF (1201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the polarization characteristics of coherent enhanced backscattering (EBS) using the pseudo-spectral time domain method implemented on staggered grid and local Fourier basis (SLPSTD) [Opt. Express 18, 9236 (2010)]. The studies are focused on Mie scatterers with findings profound to the understanding of polarization evolution in the scattering process. For linear polarization studies, the low-order scattering component of EBS is azimuthally anisotropic. A relationship between the degree of anisotropy and the photon’s penetration depth is established to characterize the depolarization progress. For circular polarization, exact numerical solutions disclose the origin of polarization memory effect and the helicity-flipping phenomenon. The region responsible for helicity-flipping is identified. Our numerical technique can be potentially applied to subsurface imaging that explores polarization memory effect.

© 2010 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering
(290.7050) Scattering : Turbid media

ToC Category:
Scattering

History
Original Manuscript: November 8, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 3, 2010
Published: December 15, 2010

Citation
Ming Ding and Kun Chen, "Numerical investigation on polarization characteristics of coherent enhanced backscattering using SLPSTD," Opt. Express 18, 27639-27649 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-26-27639


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Ding and K. Chen, “Staggered-grid PSTD on local Fourier basis and its applications to surface tissue modeling,” Opt. Express 18(9), 9236–9250 (2010). [CrossRef] [PubMed]
  2. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26(2), 119–129 (2000). [CrossRef] [PubMed]
  3. Y. Liu, Y. L. Kim, X. Li, and V. Backman, “Investigation of depth selectivity of polarization gating for tissue characterization,” Opt. Express 13(2), 601–611 (2005). [CrossRef] [PubMed]
  4. Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, “Depth-resolved low-coherence enhanced backscattering,” Opt. Lett. 30(7), 741–743 (2005). [CrossRef] [PubMed]
  5. Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, “Origin of low-coherence enhanced backscattering,” Opt. Lett. 31(10), 1459–1461 (2006). [CrossRef] [PubMed]
  6. A. Lagendijk, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: Anisotropy effects and light path classification,” Phys. Rev. Lett. 58(4), 361–364 (1987). [CrossRef] [PubMed]
  7. M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Polarisation effects in weak localization of light,” J. Phys. D Appl. Phys. 21(10S), 28–31 (1988). [CrossRef]
  8. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986). [CrossRef] [PubMed]
  9. R. Lenke, R. Tweer, and G. Maret, “Coherent backscattering of turbid samples containing large Mie spheres,” J. Opt. A-Pure Appl. Op. 4(3), 293–298 (2002).
  10. H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Modeling low-coherence enhanced backscattering using Monte Carlo simulation,” Appl. Opt. 45(24), 6292–6300 (2006). [CrossRef] [PubMed]
  11. J. Sawicki, N. Kastor, and M. Xu, “Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers,” Opt. Express 16(8), 5728–5738 (2008). [CrossRef] [PubMed]
  12. M. I. Mishchenko, J. M. Dlugach, and L. Liu, “Azimuthal asymmetry of the coherent backscattering cone: theoretical results,” Phys. Rev. A 80(5), 053824 (2009). [CrossRef]
  13. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition (Artech House, 2000).
  14. Q. H. Liu, “The PSTD algorithm: A time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15(3), 158–165 (1997). [CrossRef]
  15. S. H. Tseng, J. H. Greene, A. Taflove, D. Maitland, V. Backman, and J. T. Walsh., “Exact solution of Maxwell’s equations for optical interactions with a macroscopic random medium,” Opt. Lett. 29(12), 1393–1395 (2004). [CrossRef] [PubMed]
  16. K. M. Koo, Y. Takiguchi, and R. R. Alfano, “Weak localization of photons: contributions from the different scattering pathlengths,” IEEEPhoton. Technol. Lett. 58, 94–96 (1989).
  17. Y. L. Kim, P. Pradhan, M. H. Kim, and V. Backman, “Circular polarization memory effect in low-coherence enhanced backscattering of light,” Opt. Lett. 31(18), 2744–2746 (2006). [CrossRef] [PubMed]
  18. S. A. Kartazayeva, X. Ni, and R. R. Alfano, “Backscattering target detection in a turbid medium by use of circularly and linearly polarized light,” Opt. Lett. 30(10), 1168–1170 (2005). [CrossRef] [PubMed]
  19. R. E. Nothdurft and G. Yao, “Applying the polarization memory effect in polarization-gated subsurface imaging,” Opt. Express 14(11), 4656–4661 (2006). [CrossRef] [PubMed]
  20. R. E. Nothdurft and G. Yao, “Effects of turbid media optical properties on object visibility in subsurface polarization imaging,” Appl. Opt. 45(22), 5532–5541 (2006). [CrossRef] [PubMed]
  21. T. W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” IEEE Antennas Wirel. Propag. Lett. 3(14), 253–256 (2004). [CrossRef]
  22. Q. H. Liu, “Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain(PSTD) algorithm,” IEEE Trans. Geosci. Rem. Sens. 37(2), 917–926 (1999). [CrossRef]
  23. S. H. Tseng, Y. L. Kim, A. Taflove, D. Maitland, V. Backman, and J. T. Walsh., “Simulation of enhanced backscattering of light by numerically solving Maxwell’s equations without heuristic approximations,” Opt. Express 13(10), 3666–3672 (2005). [CrossRef] [PubMed]
  24. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited